HDU 1160 FatMouse's Speed(求最长递减序列+记录路径)

本文深入探讨了大数据处理技术在实际应用中的重要性,并重点介绍了AI音视频技术的发展与应用案例,旨在为读者提供全面的技术视角与实践指导。

这道题的意思是:有人认为老鼠越胖跑得越快。现在给你n个老鼠,给出每个老鼠的重量和速度。按重量排序后求出来有多少老鼠的的速度是一个递减序列。看看是否那个人是否正确。

输出序列的长度,还得输出这个序列上老鼠原来在输入时的位置。所以要用一个数组保存前驱。

注意:Special Judge

FatMouse's Speed

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8093    Accepted Submission(s): 3593
Special Judge


Problem Description
FatMouse believes that the fatter a mouse is, the faster it runs. To disprove this, you want to take the data on a collection of mice and put as large a subset of this data as possible into a sequence so that the weights are increasing, but the speeds are decreasing.
 

Input
Input contains data for a bunch of mice, one mouse per line, terminated by end of file.

The data for a particular mouse will consist of a pair of integers: the first representing its size in grams and the second representing its speed in centimeters per second. Both integers are between 1 and 10000. The data in each test case will contain information for at most 1000 mice.

Two mice may have the same weight, the same speed, or even the same weight and speed. 
 

Output
Your program should output a sequence of lines of data; the first line should contain a number n; the remaining n lines should each contain a single positive integer (each one representing a mouse). If these n integers are m[1], m[2],..., m[n] then it must be the case that 

W[m[1]] < W[m[2]] < ... < W[m[n]]

and 

S[m[1]] > S[m[2]] > ... > S[m[n]]

In order for the answer to be correct, n should be as large as possible.
All inequalities are strict: weights must be strictly increasing, and speeds must be strictly decreasing. There may be many correct outputs for a given input, your program only needs to find one. 
 

Sample Input
6008 1300 6000 2100 500 2000 1000 4000 1100 3000 6000 2000 8000 1400 6000 1200 2000 1900
 

Sample Output
4 4 5 9 7
 

#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-7
#define M 10001000
#define LL __int64
//#define LL long long
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
const int maxn = 50000;

using namespace std;

struct node
{
    int w, s;
    int i;
} f[maxn];

int dp[maxn];
int pre[maxn];
int num[maxn];

int cmp(node a, node b)
{
    if(a.w == b.w)
        return a.s > b.s;
    return a.w < b.w;
}

int main()
{
    int n = 0;
    while(cin >>f[n].w>>f[n].s)
    {
        f[n].i = n+1;
        n++;
    }
    sort(f, f+n, cmp);
    for(int i = 0; i < n; i++)
    {
        pre[i] = -1;
        dp[i] = 1;
        for(int j = i-1; j >= 0; j--)
        {
            if(f[j].s > f[i].s && dp[i] < dp[j]+1)
            {
                dp[i] = dp[j]+1;
                pre[i] = j;
            }
        }
    }
    int m = 0;
    for(int i = 0; i < n; i++)
        if(dp[i] > dp[m])
            m = i;
    cout<<dp[m]<<endl;
    int t = 0;
    while(pre[m] != -1)
    {
        num[t++] = f[m].i;
        m = pre[m];
    }
    num[t++] = f[m].i;
    for(int i = t-1; i >= 0; i--)
        cout<<num[i]<<endl;
    return 0;
}


内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值