maps 和 reduces 的数量

本文介绍了Hadoop中MapReduce任务的调度策略与优化方法,包括如何合理设置map和reduce任务的数量,以达到集群资源的最佳利用。

原文:http://wiki.apache.org/hadoop/HowManyMapsAndReduces

1、增加task的数量,一方面增加了系统的开销,另一方面增加了负载平衡和减少了任务失败产生的开销

2、map task的数量控制是比较subtle,因为 mapred.map.tasks的参数值并不能直接控制map的数量,它只是给InputFormat一个提示。而InputFormat中的 InputSplit的大小,决定了一个job拥有多少个map。默认 Input Split的大小是64m(与dfs.block.size的默认值相同)。然而,如果输入的数据量巨大,那么默认的64M的block会有几万甚至几十万的map task,集群的网络传输会很大,最严重的是给Job Tracker的调度、队列、内存都会带来很大的压力。mapred.min.split.size这个配置决定了每个Input Split的最小值,用户可以修改这个参数,从而改变map task的数量

3、一个恰当的map 并行度是大每每个节点 10 -- 100个map,不是说越少就越好,因为map在初始化过程需要一定的时间,所以每个map最少执行一分钟比较好。

4、reduce.task的数量由mapred.reduce.tasks来决定,默认值是1

5、合适的reduce.task数量是 0.95 或 1.75 * (nodes * mapred.tasktracker.tasks.maximun)。

其中 mapred.tasktracker.tasks.reduce.maximum的数量一般设置为各节点 cpu core数目,即能同时计算的 slot (CPU插槽)数量。

对于0.95,当map结束时,所有的reduce能够立即启动;

对于1.75,较快的节点结束第一轮 reduce后,可以开始第二轮的reduce任务,从而提高负载均衡。

代码转载自:https://pan.quark.cn/s/a4b39357ea24 本文重点阐述了利用 LabVIEW 软件构建的锁相放大器的设计方案及其具体实施流程,并探讨了该设备在声波相位差定位系统中的实际运用情况。 锁相放大器作为一项基础测量技术,其核心功能在于能够精确锁定微弱信号的频率参数并完成相关测量工作。 在采用 LabVIEW 软件开发的锁相放大器系统中,通过计算测量信号两条参考信号之间的互相关函数,实现对微弱信号的频率锁定,同时输出被测信号的幅值信息。 虚拟仪器技术是一种基于计算机硬件平台的仪器系统,其显著特征在于用户可以根据实际需求自主设计仪器功能,配备虚拟化操作界面,并将测试功能完全由专用软件程序实现。 虚拟仪器系统的基本架构主要由计算机主机、专用软件程序以及硬件接口模块等核心部件构成。 虚拟仪器最突出的优势在于其功能完全取决于软件编程,用户可以根据具体应用场景灵活调整系统功能参数。 在基于 LabVIEW 软件开发的锁相放大器系统中,主要运用 LabVIEW 软件平台完成锁相放大器功能的整体设计。 LabVIEW 作为一个图形化编程环境,能够高效地完成虚拟仪器的开发工作。 借助 LabVIEW 软件,可以快速构建锁相放大器的用户操作界面,并且可以根据实际需求进行灵活调整功能扩展。 锁相放大器系统的关键构成要素包括测量信号输入通道、参考信号输入通道、频率锁定处理单元以及信号幅值输出单元。 测量信号是系统需要检测的对象,参考信号则用于引导系统完成对测量信号的频率锁定。 频率锁定处理单元负责实现测量信号的锁定功能,信号幅值输出单元则负责输出被测信号的幅值大小。 在锁相放大器的实际实现过程中,系统采用了双路参考信号输入方案来锁定测量信号。 通过分析两路参考信号之间的相...
边缘计算环境中基于启发式算法的深度神经网络卸载策略(Matlab代码实现)内容概要:本文介绍了在边缘计算环境中,利用启发式算法实现深度神经网络任务卸载的策略,并提供了相应的Matlab代码实现。文章重点探讨了如何通过合理的任务划分调度,将深度神经网络的计算任务高效地卸载到边缘服务器,从而降低终端设备的计算负担、减少延迟并提高整体系统效率。文中涵盖了问题建模、启发式算法设计(如贪心策略、遗传算法、粒子群优化等可能的候选方法)、性能评估指标(如能耗、延迟、资源利用率)以及仿真实验结果分析等内容,旨在为边缘智能计算中的模型推理优化提供可行的技术路径。; 适合人群:具备一定编程基础,熟悉Matlab工具,从事边缘计算、人工智能、物联网或智能系统优化方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究深度神经网络在资源受限设备上的部署优化;②探索边缘计算环境下的任务卸载机制算法设计;③通过Matlab仿真验证不同启发式算法在实际场景中的性能表现,优化系统延迟能耗。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注算法实现细节仿真参数设置,同时可尝试复现并对比不同启发式算法的效果,以深入理解边缘计算中DNN卸载的核心挑战解决方案。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值