sql优化小例子

客户业务系统随着数据量的增大出现运行速度降低问题,通过AWR报告分析发现运行效率低的SQL,如下:

select * from scott.计划产品出生证表 where 序号=(select min(序号) from scott.计划产品出生证表 where 任务单号= ‘xxxx-xxx-xxx’ and 产品状态=’正在执行’)

其执行计划

-----------------------------------------------------------------------------------------------
Plan hash value: 2054637612
------------------------------------------------------------------------------------------------
| Id  | Operation                     | Name           | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |                |     1 |   131 |   851   (2)| 00:00:11 |
|*  1 |  TABLE ACCESS FULL            | 计划_产品出生证   |    1 |   131 |   838   (2)| 00:00:11 |
|   2 |   SORT AGGREGATE              |                |     1 |    29 |            |          |
|*  3 |    TABLE ACCESS BY INDEX ROWID| 计划_产品出生证  |     1 |    29 |    13   (0)| 00:00:01 |
|*  4 |     INDEX RANGE SCAN          | 计划_产品出生证  |   366 |       |     4   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
----------------------------------------------------------------------------------------------
   1 - filter("序号"= (SELECT MIN("序号") FROM "SCOTT"."计划_产品出生证表" "计划_产品出生证表" WHERE
              "产品状态"='正在执行' AND "任务单号"='170511-P22-001'))
   3 - filter("任务单号"='170511-P22-001')
   4 - access("产品状态"='正在执行')
统计信息
----------------------------------------------------------
          1  recursive calls
          0  db block gets
          3802  consistent gets
          0  physical reads
          0  redo size
       1636  bytes sent via SQL*Net to client
        374  bytes received via SQL*Net from client
          1  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
          0  rows processed

分析:
执行计划中id=1的SQL通过全表扫描方式获取数据,整体的cost值为851,consistent gets 3802,SQL效率低下。

解决方法:
create index scott.计划产品出生证表_indx_zxq on scott.计划产品出生证表(序号);

效果:
优化后的SQL执行计划执行计划

Plan hash value: 1523355933
--------------------------------------------------------------------------------------------------------
 Id  | Operation                       | Name             | Rows |  Bytes | Cost (%CPU)| Time   |
--------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT               |                  |   1  |   131 |  15   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID   | 计划_产品出生证表   |   1  |  131  |   2   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN             | 计划_产品出生证表_I |   1  |       |   1   (0)| 00:00:01 |
|   3 |    SORT AGGREGATE              |                  |    1  |   29 |           |          |
|*  4 |     TABLE ACCESS BY INDEX ROWID| 计划_产品出生证表   |     1 |  29  | 13 (0)   | 00:00:01 |
|*  5 |      INDEX RANGE SCAN          | 计划_产品出生证表_I |   366 |      |   4   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------


   2 - access("序号"= (SELECT MIN("序号") FROM "SCOTT"."计划_产品出生证表" "计划_产品出生证表" WHERE
              "产品状态"='正在执行' AND "任务单号"='xxxx-xxx-xxx'))
   4 - filter("任务单号"='xxxx-xxx-xxx')
   5 - access("产品状态"='正在执行')

统计信息
----------------------------------------------------------
          1  recursive calls
          0  db block gets
          23  consistent gets
          0  physical reads
          0  redo size
       1636  bytes sent via SQL*Net to client
        374  bytes received via SQL*Net from client
          1  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
0   rows processed

执行计划中SQL由全表扫描方式改为索引读取方式获取数据,cost值由851降低至15,consistent gets由 3802降低至23, SQL效率明显提高。

SQL查询优化是指通过调整SQL语句、数据库结构以及索引等方式提高查询效率的过程。以下是几个常见的SQL优化示例: ### 示例1:添加合适的索引 如果频繁地对某个字段进行过滤操作(如`WHERE name = 'John'`),可以考虑为此字段创建索引。例如: ```sql CREATE INDEX idx_name ON users(name); ``` 这将显著加快基于该字段的查询速度。 --- ### 示例2:避免在 `WHERE` 子句中使用函数 假设表中有时间戳字段,并需要按日期范围查找数据。直接在列上应用函数会阻止索引的有效利用。 **低效写法**: ```sql SELECT * FROM logs WHERE DATE(created_at) = '2023-09-05'; ``` **高效写法** (转换为区间比较): ```sql SELECT * FROM logs WHERE created_at >= '2023-09-05 00:00:00' AND created_at < '2023-09-06 00:00:00'; ``` --- ### 示例3:减少不必要的字段选择 (`SELECT *`) 尽量只选取实际需要使用的字段而非全部字段。这样能降低I/O开销并提升性能。 **低效写法**: ```sql SELECT * FROM employees; ``` **高效写法**: ```sql SELECT id, first_name, last_name FROM employees; ``` --- ### 示例4:合理运用JOIN代替子查询 某些情况下,适当改写成 JOIN 能够带来更好的性能表现。 **复杂子查询版本**: ```sql SELECT department_id, COUNT(*) AS employee_count FROM departments d WHERE EXISTS ( SELECT 1 FROM employees e WHERE e.department_id = d.id AND salary > 8000 ) GROUP BY department_id; ``` **简化后的JOIN版**: ```sql SELECT d.id AS department_id, COUNT(e.id) AS employee_count FROM departments d LEFT JOIN employees e ON d.id = e.department_id AND e.salary > 8000 GROUP BY d.id HAVING COUNT(e.id) > 0 ; ``` 以上仅是一些基础性的 SQL 查询优化策略,在真实场景下还需结合具体的业务需求与系统环境做深入分析!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值