
Machine Learning
文章平均质量分 81
萌哒萌哒
这个作者很懒,什么都没留下…
展开
-
机器学习随笔一:数据不平衡问题
这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一。 一、数据不平衡 在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布是均匀的。当我们把这些算法直接应用于实际数据时,大多数情况下都无法取得理想的结果。因为实际数据往往分布得很不均匀,转载 2017-07-14 10:26:23 · 522 阅读 · 0 评论 -
PCA的本质分析(泛数学原理)
PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。 当然我并不打算把文章写成转载 2017-09-15 14:56:45 · 1023 阅读 · 0 评论