浅议 Static_cast 与 Dynamic_cast

出处:http://www.cnblogs.com/zhyg6516/archive/2011/03/07/1971898.html

说明:源自网络,对其正确性不负责任

转这篇博文的目的是,记录学习过程。

对于问题要较真,在解决这个问题中会学到很多,远远超过自己期望,锻炼思维,享受这个过程。

问题: Static_cast 与 Dynamic_cast的区别

来自书本上的解释:

  用 static_cast<type-id > ( expression )  

1. static_cast(expression) The static_cast<>() is used to cast between the integer types. 'e.g.' char->long, int->short etc.

   用来数值之间的转化。

2.  可以在相关指针之间转换,指针在void * 之间转换,还可以在基类和派生类之间转换。 这些转换是在编译的时候就确定下来转换(无非就是根据继承关系,偏移指针而已),但是这需要自己保证安全。

   比如

#include <iostream>
using namespace std;

class Base 
{
public:
    virtual void f() {cout<<"Base::f()"<<endl;}

};

class Derive: public Base
{
public:
    virtual  void f() {cout<<"Derive::f()"<<endl;}
    virtual  void f2() {cout<<"Derive::f1()"<<endl;}

};


int main()
{

    Base *pbase1  = new Derive();
    Derive* pderive1 = static_cast<Derive *>(pbase1);
    pderive1->f(); // Derive::f()
    
    Base* pbase2 = new Base();
    Derive * pderive2 = static_cast<Derive *>(pbase2);
    pderive2->f();  // Base::f()
    pderive2->f2(); // throw exception "Access violation reading"

    delete pbase1;
    delete pbase2;

}

虽然 由 pbase2 转化到 pderive2 ,编译器编译正确。 但是当调用 pderive2->f(); 应该不是希望的; 调用pderive2->f2() 因为基类本身就没有这个函数,说以运行时出错,抛出异常。

所以说static_cast 是编译时确定下来,需要自己确保转换类型安全,否则运行时会抛出异常.

 注意static_cast 不能直接在没有继承关系的对象指针之间进行转换。在Com 里面实现不同接口的同个对象,其也不能再接口之间转换(更何况是动态的),所以COM提供一个query 借口。

用法:dynamic_cast < type-id > ( expression)

是专门用于具有继承关系的类之间转换的,尤其是向下类型转换,是安全的。

#include <iostream>
using namespace std;

class Base
{
public:
virtual void f() {cout<<"Base::f()"<<endl;}

};

class Derive: public Base
{
public:
virtual void f() {cout<<"Derive::f()"<<endl;}
virtual void f2() {cout<<"Derive::f1()"<<endl;}

};

int main()
{

Base *pbase1 = new Derive();
Derive* pderive1 = dynamic_cast<Derive *>(pbase1); //down-cast
pderive1->f(); // Derive::f()

Base* pbase2 = new Base();
Derive * pderive2 = dynamic_cast<Derive *>(pbase2); //up-cast

if ( pderive2) // NULL
{
pderive2->f();
pderive2->f2();
}

delete pbase1;
delete pbase2;

}


内容概要:本文深入探讨了多种高级格兰杰因果检验方法,包括非线性格兰杰因果检验、分位数格兰杰因果检验、混频格兰杰因果检验以及频域因果检验。每种方法都有其独特之处,适用于不同类型的时间序列数据。非线性格兰杰因果检验分为非参数方法、双变量和多元检验,能够在不假设数据分布的情况下处理复杂的关系。分位数格兰杰因果检验则关注不同分位数下的因果关系,尤其适合经济数据的研究。混频格兰杰因果检验解决了不同频率数据之间的因果关系分析问题,而频域因果检验则专注于不同频率成分下的因果关系。文中还提供了具体的Python和R代码示例,帮助读者理解和应用这些方法。 适合人群:从事时间序列分析、经济学、金融学等领域研究的专业人士,尤其是对非线性因果关系感兴趣的学者和技术人员。 使用场景及目标:①研究复杂非线性时间序列数据中的因果关系;②分析不同分位数下的经济变量因果关系;③处理不同频率数据的因果关系;④识别特定频率成分下的因果关系。通过这些方法,研究人员可以获得更全面、细致的因果关系洞察。 阅读建议:由于涉及较多数学公式和编程代码,建议读者具备一定的统计学和编程基础,特别是对时间序列分析有一定了解。同时,建议结合具体案例进行实践操作,以便更好地掌握这些方法的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值