2021-01-13

作者分享刷LeetCode的感悟,指出刷LeetCode的关键并非刷题数量,有刷600多题仍一面挂的例子。强调其真正意义是理解和应用常用算法,做到融会贯通,看到题能想算法,看到算法能想适用题型。

最近在刷leetcode。

刷leetcode最重要的事情不是说刷了多少题,有个微软的HR告诉我,有个人刷了600多道leetcode,但是一面就挂了。

刷leetcode的真正意义是理解和应用那些常用算法,做到融汇贯通,而不是刷题越多越好。

要做到看到题就能想出算法,也要做到看到算法想到有哪些类型题可以用这个算法解决。

足矣。

物联网通信协议测试是保障各类设备间实现可靠数据交互的核心环节。在众多适用于物联网的通信协议中,MQTT(消息队列遥测传输)以其设计简洁与低能耗的优势,获得了广泛应用。为确保MQTT客户端与服务端的实现严格遵循既定标准,并具备良好的互操作性,实施系统化的测试验证至关重要。 为此,采用TTCN-3(树表结合表示法第3版)这一国际标准化测试语言构建的自动化测试框架被引入。该语言擅长表达复杂的测试逻辑与数据结构,同时保持了代码的清晰度与可维护性。基于此框架开发的MQTT协议一致性验证套件,旨在自动化地检验MQTT实现是否完全符合协议规范,并验证其与Eclipse基金会及欧洲电信标准化协会(ETSI)所发布的相关标准的兼容性。这两个组织在物联网通信领域具有广泛影响力,其标准常被视为行业重要参考。 MQTT协议本身存在多个迭代版本,例如3.1、3.1.1以及功能更为丰富的5.0版。一套完备的测试工具必须能够覆盖对这些不同版本的验证,以确保基于各版本开发的设备与应用均能满足一致的质量与可靠性要求,这对于物联网生态的长期稳定运行具有基础性意义。 本资源包内包含核心测试框架文件、一份概述性介绍文档以及一份附加资源文档。这些材料共同提供了关于测试套件功能、应用方法及可能包含的扩展工具或示例的详细信息,旨在协助用户快速理解并部署该测试解决方案。 综上所述,一个基于TTCN-3的高效自动化测试框架,为执行全面、标准的MQTT协议一致性验证提供了理想的技术路径。通过此类专业测试套件,开发人员能够有效确保其MQTT实现的规范符合性与系统兼容性,从而为构建稳定、安全的物联网通信环境奠定坚实基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
你提供的数据是一个典型的空气质量监测数据集,包含日期、AQI 和多种污染物浓度以及污染等级。我们可以基于此数据进行统计分析、可视化或模型训练等操作。 以下是一些可以执行的常见任务和示例代码: --- ### ✅ 1. 数据加载与查看 ```python import pandas as pd # 假设你的数据存储在一个 CSV 文件中 data = pd.read_csv("air_quality_data.csv") # 查看前几行数据 print(data.head()) ``` --- ### ✅ 2. 按污染等级分组统计污染物均值 ```python grouped_stats = data.groupby('污染等级').agg({ 'PM2.5': 'mean', 'PM10': 'mean', 'CO': 'mean', 'NO2': 'mean', 'SO2': 'mean', 'O3_8h': 'mean' }).reset_index() print(grouped_stats) ``` --- ### ✅ 3. 绘制箱线图(Boxplot)比较不同污染等级下的污染物分布 ```python import matplotlib.pyplot as plt import seaborn as sns pollutants = ['PM2.5', 'PM10', 'CO', 'NO2', 'SO2', 'O3_8h'] fig, axes = plt.subplots(2, 3, figsize=(16, 10), dpi=100) axes = axes.flatten() for i, pollutant in enumerate(pollutants): sns.boxplot(x='污染等级', y=pollutant, data=data, ax=axes[i], palette="Set2") axes[i].set_title(f'{pollutant} 分布') axes[i].tick_params(axis='x', rotation=45) plt.tight_layout() plt.show() ``` --- ### ✅ 4. 进行显著性检验(ANOVA 或 Kruskal-Wallis) ```python from scipy.stats import f_oneway, kruskal for pollutant in pollutants: groups = [group[pollutant].values for name, group in data.groupby('污染等级')] # 正态性检验(可选) normality_results = [stats.normaltest(group) for group in groups] p_values_normal = [p for stat, p in normality_results] if all(p > 0.05 for p in p_values_normal): f_stat, p_val = f_oneway(*groups) print(f"污染物 {pollutant}: ANOVA p-value = {p_val:.4f}") else: h_stat, p_val = kruskal(*groups) print(f"污染物 {pollutant}: Kruskal-Wallis p-value = {p_val:.4f}") ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值