上一篇笔记中,介绍了因子分析模型,因子分析模型使用d维子空间的隐含变量z来拟合训练数据,所以实际上因子分析模型是一种数据降维的方法,它基于一个概率模型,使用EM算法来估计参数。
本篇主要介绍PCA(Principal Components Analysis, 主成分分析),也是一种降维方法,但是该方法比较直接,只需计算特征向量就可以进行降维了。本篇对应的视频是公开课的第14个视频,该视频的前半部分为因子分析模型的EM求解,已写入笔记13,本篇只是后半部分的笔记,所以内容较少。
本篇博客聚焦于主成分分析(PCA),一种用于数据降维的技术。与因子分析模型相比,PCA提供了一种更为直接且易于实现的方法。通过计算特征向量,PCA能有效降低数据维度,同时保留关键信息,适用于多种数据集的预处理。
上一篇笔记中,介绍了因子分析模型,因子分析模型使用d维子空间的隐含变量z来拟合训练数据,所以实际上因子分析模型是一种数据降维的方法,它基于一个概率模型,使用EM算法来估计参数。
本篇主要介绍PCA(Principal Components Analysis, 主成分分析),也是一种降维方法,但是该方法比较直接,只需计算特征向量就可以进行降维了。本篇对应的视频是公开课的第14个视频,该视频的前半部分为因子分析模型的EM求解,已写入笔记13,本篇只是后半部分的笔记,所以内容较少。
9374

被折叠的 条评论
为什么被折叠?