[leetcode 160] Intersection of Two Linked Lists

本文介绍了一种寻找两个单链表开始相交节点的方法。通过一次遍历确定交点是否存在,并找到具体的交点位置,算法力争达到O(n)的时间复杂度和O(1)的空间复杂度。

Write a program to find the node at which the intersection of two singly linked lists begins.


For example, the following two linked lists:

A:          a1 → a2
                   ↘
                     c1 → c2 → c3
                   ↗            
B:     b1 → b2 → b3

begin to intersect at node c1.


Notes:

  • If the two linked lists have no intersection at all, return null.
  • The linked lists must retain their original structure after the function returns.
  • You may assume there are no cycles anywhere in the entire linked structure.
  • Your code should preferably run in O(n) time and use only O(1) memory.

Credits:

Special thanks to @stellari for adding this problem and creating all test cases.

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
        if (!headA || !headB) {
            return NULL;
        }
        auto first = headA;
        auto second = headB;
        int ca = 1;
        int cb = 1;
        //判断是否有交叉
        while (first->next) {
            ca++;
            first = first->next;
        }
        while (second->next) {
            cb++;
            second = second->next;
        }
        if (first != second) {
            return NULL;
        }
        //求交叉点
        if (ca > cb) {
            first = headA;
            second = headB;
        } else {
            first = headB;
            second = headA;
        }
        for (int i = 0; i < abs(ca-cb); i++) {
            first = first->next;
        }
        while (first != second) {
            first = first->next;
            second = second->next;
        }
        return first;
        
    }
};


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值