[leetcode 76] Minimum Window Substring

本文提供了一种复杂度为O(n)的算法,用于找到字符串S中包含所有目标字符串T字符的最短子串。通过双指针技巧实现,确保效率并解决相关问题。

Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

For example,
S = "ADOBECODEBANC"
T = "ABC"

Minimum window is "BANC".

Note:
If there is no such window in S that covers all characters in T, return the emtpy string "".

If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.

思路:最短摘要生成问题。双指针,尾指针不断往后走,直到该窗口包含了T中所有的字符,再讲头指针往后走,直到不能再走为止。

class Solution {
public:
    string minWindow(string S, string T) {
        const int ASCII_NUM = 256;
        const int n = S.size();
        const int m = T.size();
        if (n == 0 || n < m) {
            return "";
        }
        int expect_show[ASCII_NUM];
        int appear_show[ASCII_NUM];
        fill_n(&expect_show[0], ASCII_NUM, 0);
        fill_n(&appear_show[0], ASCII_NUM, 0);
        for (int i = 0; i < m; i++) {
            expect_show[T[i]]++;
        }
        int min_start = 0;
        int win_start = 0;
        int win_len = INT_MAX;
        int appear = 0;
        for (int win_end = 0; win_end < n; win_end++) {
            if (expect_show[S[win_end]] > 0) {
                appear_show[S[win_end]]++;
                if (appear_show[S[win_end]] <= expect_show[S[win_end]]) {
                    appear++;
                }
            }
            if (T.size() == appear) {
                while (appear_show[S[win_start]] > expect_show[S[win_start]] || expect_show[S[win_start]] == 0) {
                    appear_show[S[win_start]]--;
                    win_start++;
                }
                if (win_len > (win_end - win_start + 1)) {
                    win_len = win_end - win_start + 1;
                    min_start = win_start;
                }
            }
        }
        if (win_len == INT_MAX) {
            return "";
        }
        return S.substr(min_start, win_len);
        
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值