Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
Note: m and n will be at most 100.
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
const int m = obstacleGrid.size();
if (m == 0) {
return 0;
}
const int n = obstacleGrid[0].size();
if (obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1) {
return 0;
}
int f[n+1];
fill_n(&f[0], n+1, 1);
f[0] = 0;
int i = 0;
for (i = 1; i <= n; i++) {
if (obstacleGrid[0][i-1] == 1) {
f[i] = 0;
break;
}
}
for (int j = i; j <= n; j++) {
f[j] = 0;
}
for (int i = 2; i <= m; i++) {
for (int j = 1; j <= n; j++) {
f[j] = obstacleGrid[i-1][j-1]?0:f[j]+f[j-1];
}
}
return f[n];
}
};
本文介绍了一个基于动态规划算法的问题——在包含障碍物的网格中计算从起点到终点的不同路径数量。文章提供了一段C++代码实现,展示了如何通过动态规划解决这一问题。
533

被折叠的 条评论
为什么被折叠?



