Given a binary tree, return the preorder traversal of its nodes' values.
For example:
Given binary tree {1,#,2,3},
1
\
2
/
3
return [1,2,3].
Note: Recursive solution is trivial, could you do it iteratively?
递归 空间复杂度为O(n),时间复杂度为O(n)
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> res;
vector<int> preorderTraversal(TreeNode *root) {
if (!root) {
return res;
}
res.push_back(root->val);
preorderTraversal(root->left);
preorderTraversal(root->right);
return res;
}
};
栈 空间复杂度为O(n),时间复杂度为O(n)
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode *root) {
vector<int> res;
if (!root) {
return res;
}
stack<TreeNode *> p;
p.push(root);
while (!p.empty()) {
auto tmp = p.top();
p.pop();
res.push_back(tmp->val);
if (tmp->right) {
p.push(tmp->right);
}
if (tmp->left) {
p.push(tmp->left);
}
}
return res;
}
};
Morris二叉树遍历(参考http://www.it165.net/pro/html/201403/10857.html) 空间复杂度为O(1),时间复杂度为O(n)
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode *root) {
vector<int> res;
TreeNode *cur = root;
while (cur) {
if (cur->left == NULL) {
res.push_back(cur->val);
cur = cur->right;
} else {
TreeNode *node = cur->left;
while (node->right && node->right != cur) {
node = node->right;
}
if (node->right == NULL) {
res.push_back(cur->val);
node->right = cur;
cur = cur->left;
} else {
node->right = NULL;
cur = cur->right;
}
}
}
return res;
}
};
本文介绍二叉树前序遍历的三种方法:递归、栈迭代及Morris遍历。递归方法简洁但空间复杂度较高;栈迭代避免了递归的调用开销;Morris遍历则在空间复杂度上达到了最优。
407

被折叠的 条评论
为什么被折叠?



