视觉SLAM后端优化

BA的概念

批量状态估计问题可以转化为最大似然估计问题,并使用最小二乘法进行求解。
视觉SLAM的主流为非线性优化方法。

所谓Bundle Adjustment(BA),是指从视觉图像中提炼出最优的3D模型和相机参数(内参和外参数)。
考虑从任意特征点发射出来的几束光线(bundles of light rays),它们会在几个相机的成像平面上变成像素或是检测到的特征点。如果我们调整(adjustment)各相机姿态和各特征点的空间位置,使得这些光线最终收束到相机的光心,就称为BA。

求解BA

Ceres求解BA

定义重投影误差模型
ch9\SnavelyReprojectionError.h

class SnavelyReprojectionError {
public:
    SnavelyReprojectionError(double observation_x, double observation_y) : observed_x(observation_x),
                                                                           observed_y(observation_y) {}

    template<typename T>
    bool operator()(const T *const camera,
                    const T *const point,
                    T *residuals) const {
        // camera[0,1,2] are the angle-axis rotation
        T predictions[2];
        CamProjectionWithDistortion(camera, point, predictions);
        residuals[0] = predictions[0] - T(observed_x);
        residuals[1] = predictions[1] - T(observed_y);

        return true;
    }

    // camera : 9 dims array
    // [0-2] : angle-axis rotation
    // [3-5] : translateion
    // [6-8] : camera parameter, [6] focal length, [7-8] second and forth order radial distortion
    // point : 3D location.
    // predictions : 2D predictions with center of the image plane.
    template<typename T>
    static inline bool CamProjectionWithDistortion(const T *camera, const T *point, T *predictions) {
        // Rodrigues' formula
        T p[3];
        AngleAxisRotatePoint(camera, point, p);
        // camera[3,4,5] are the translation
        p[0] += camera[3];
        p[1] += camera[4];
        p[2] += camera[5];

        // Compute the center fo distortion
        T xp = -p[0] / p[2];
        T yp = -p[1] / p[2];

        // Apply second and fourth order radial distortion
        const T &l1 = camera[7];
        const T &l2 = camera[8];

        T r2 = xp * xp + yp * yp;
        T distortion = T(1.0) + r2 * (l1 + l2 * r2);

        const T &focal = camera[6];
        predictions[0] = focal * distortion * xp;
        predictions[1] = focal * distortion * yp;

        return true;
    }

    static ceres::CostFunction *Create(const double observed_x, const double observed_y) {
        return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
            new SnavelyReprojectionError(observed_x, observed_y)));
    }

private:
    double observed_x;
    double observed_y;
};

BA搭建和求解
ch9\bundle_adjustment_ceres.cpp
SolveBA函数

void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points();
    double *cameras = bal_problem.mutable_cameras();

    // Observations is 2 * num_observations long array observations
    // [u_1, u_2, ... u_n], where each u_i is two dimensional, the x
    // and y position of the observation.
    const double *observations = bal_problem.observations();
    ceres::Problem problem;

    for (int i = 0; i < bal_problem.num_observations(); ++i) {
        ceres::CostFunction *cost_function;

        // Each Residual block takes a point and a camera as input
        // and outputs a 2 dimensional Residual
        cost_function = SnavelyReprojectionError::Create(observations[2 * i + 0], observations[2 * i + 1]);

        // If enabled use Huber's loss function.
        ceres::LossFunction *loss_function = new ceres::HuberLoss(1.0);

        // Each observation corresponds to a pair of a camera and a point
        // which are identified by camera_index()[i] and point_index()[i]
        // respectively.
        double *camera = cameras + camera_block_size * bal_problem.camera_index()[i];
        double *point = points + point_block_size * bal_problem.point_index()[i];

        problem.AddResidualBlock(cost_function, loss_function, camera, point);
    }

    // show some information here ...
    std::cout << "bal problem file loaded..." << std::endl;
    std::cout << "bal problem have " << bal_problem.num_cameras() << " cameras and "
              << bal_problem.num_points() << " points. " << std::endl;
    std::cout << "Forming " << bal_problem.num_observations() << " observations. " << std::endl;

    std::cout << "Solving ceres BA ... " << endl;
    ceres::Solver::Options options;
    options.linear_solver_type = ceres::LinearSolverType::SPARSE_SCHUR;
    options.minimizer_progress_to_stdout = true;
    ceres::Solver::Summary summary;
    ceres::Solve(options, &problem, &summary);
    std::cout << summary.FullReport() << "\n";
}

调用方法

int main(int argc, char **argv) {
    if (argc != 2) {
        cout << "usage: bundle_adjustment_ceres bal_data.txt" << endl;
        return 1;
    }

    BALProblem bal_problem(argv[1]);
    bal_problem.Normalize();
    bal_problem.Perturb(0.1, 0.5, 0.5);
    bal_problem.WriteToPLYFile("initial.ply");
    SolveBA(bal_problem);
    bal_problem.WriteToPLYFile("final.ply");

    return 0;
}

g2o求解BA

g2o使用图模型来描述问题的结构,所以我们用节点来表示相机和路标,用来表示它们之间的观测

相机和路标结构体定义
ch9\bundle_adjustment_ceres.cpp

自定义的节点和边,override表示对基类虚函数的覆盖。

/// 姿态和内参的结构
struct PoseAndIntrinsics {
    PoseAndIntrinsics() {}

    /// set from given data address
    explicit PoseAndIntrinsics(double *data_addr) {
        rotation = SO3d::exp(Vector3d(data_addr[0], data_addr[1], data_addr[2]));
        translation = Vector3d(data_addr[3], data_addr[4], data_addr[5]);
        focal = data_addr[6];
        k1 = data_addr[7];
        k2 = data_addr[8];
    }

    /// 将估计值放入内存
    void set_to(double *data_addr) {
        auto r = rotation.log();
        for (int i = 0; i < 3; ++i) data_addr[i] = r[i];
        for (int i = 0; i < 3; ++i) data_addr[i + 3] = translation[i];
        data_addr[6] = focal;
        data_addr[7] = k1;
        data_addr[8] = k2;
    }

    SO3d rotation;
    Vector3d translation = Vector3d::Zero();
    double focal = 0;
    double k1 = 0, k2 = 0;
};

/// 位姿加相机内参的顶点,9维,前三维为so3,接下去为t, f, k1, k2
class VertexPoseAndIntrinsics : public g2o::BaseVertex<9, PoseAndIntrinsics> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    VertexPoseAndIntrinsics() {}

    virtual void setToOriginImpl() override {
        _estimate = PoseAndIntrinsics();
    }

    virtual void oplusImpl(const double *update) override {
        _estimate.rotation = SO3d::exp(Vector3d(update[0], update[1], update[2])) * _estimate.rotation;
        _estimate.translation += Vector3d(update[3], update[4], update[5]);
        _estimate.focal += update[6];
        _estimate.k1 += update[7];
        _estimate.k2 += update[8];
    }

    /// 根据估计值投影一个点
    Vector2d project(const Vector3d &point) {
        Vector3d pc = _estimate.rotation * point + _estimate.translation;
        pc = -pc / pc[2];
        double r2 = pc.squaredNorm();
        double distortion = 1.0 + r2 * (_estimate.k1 + _estimate.k2 * r2);
        return Vector2d(_estimate.focal * distortion * pc[0],
                        _estimate.focal * distortion * pc[1]);
    }

    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}
};

class VertexPoint : public g2o::BaseVertex<3, Vector3d> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    VertexPoint() {}

    virtual void setToOriginImpl() override {
        _estimate = Vector3d(0, 0, 0);
    }

    virtual void oplusImpl(const double *update) override {
        _estimate += Vector3d(update[0], update[1], update[2]);
    }

    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}
};

class EdgeProjection :
    public g2o::BaseBinaryEdge<2, Vector2d, VertexPoseAndIntrinsics, VertexPoint> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    virtual void computeError() override {
        auto v0 = (VertexPoseAndIntrinsics *) _vertices[0];
        auto v1 = (VertexPoint *) _vertices[1];
        auto proj = v0->project(v1->estimate());
        _error = proj - _measurement;
    }

    // use numeric derivatives
    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}

};

BA搭建和求解
SloveBA函数

void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points();
    double *cameras = bal_problem.mutable_cameras();

    // pose dimension 9, landmark is 3
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<9, 3>> BlockSolverType;
    typedef g2o::LinearSolverCSparse<BlockSolverType::PoseMatrixType> LinearSolverType;
    // use LM
    auto solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm(solver);
    optimizer.setVerbose(true);

    /// build g2o problem
    const double *observations = bal_problem.observations();
    // vertex
    vector<VertexPoseAndIntrinsics *> vertex_pose_intrinsics;
    vector<VertexPoint *> vertex_points;
    for (int i = 0; i < bal_problem.num_cameras(); ++i) {
        VertexPoseAndIntrinsics *v = new VertexPoseAndIntrinsics();
        double *camera = cameras + camera_block_size * i;
        v->setId(i);
        v->setEstimate(PoseAndIntrinsics(camera));
        optimizer.addVertex(v);
        vertex_pose_intrinsics.push_back(v);
    }
    for (int i = 0; i < bal_problem.num_points(); ++i) {
        VertexPoint *v = new VertexPoint();
        double *point = points + point_block_size * i;
        v->setId(i + bal_problem.num_cameras());
        v->setEstimate(Vector3d(point[0], point[1], point[2]));
        // g2o在BA中需要手动设置待Marg的顶点
        v->setMarginalized(true);
        optimizer.addVertex(v);
        vertex_points.push_back(v);
    }

    // edge
    for (int i = 0; i < bal_problem.num_observations(); ++i) {
        EdgeProjection *edge = new EdgeProjection;
        edge->setVertex(0, vertex_pose_intrinsics[bal_problem.camera_index()[i]]);
        edge->setVertex(1, vertex_points[bal_problem.point_index()[i]]);
        edge->setMeasurement(Vector2d(observations[2 * i + 0], observations[2 * i + 1]));
        edge->setInformation(Matrix2d::Identity());
        edge->setRobustKernel(new g2o::RobustKernelHuber());
        optimizer.addEdge(edge);
    }

    optimizer.initializeOptimization();
    optimizer.optimize(40);

    // set to bal problem
    for (int i = 0; i < bal_problem.num_cameras(); ++i) {
        double *camera = cameras + camera_block_size * i;
        auto vertex = vertex_pose_intrinsics[i];
        auto estimate = vertex->estimate();
        estimate.set_to(camera);
    }
    for (int i = 0; i < bal_problem.num_points(); ++i) {
        double *point = points + point_block_size * i;
        auto vertex = vertex_points[i];
        for (int k = 0; k < 3; ++k) point[k] = vertex->estimate()[k];
    }
}

滑动窗口优化

待补充。

位姿图优化

g2o原生位姿图

顶点和边使用g2o默认的。求解器使用的LM方法。

ch10\pose_graph_g2o_SE3.cpp

/************************************************
 * 本程序演示如何用g2o solver进行位姿图优化
 * sphere.g2o是人工生成的一个Pose graph,我们来优化它。
 * 尽管可以直接通过load函数读取整个图,但我们还是自己来实现读取代码,以期获得更深刻的理解
 * 这里使用g2o/types/slam3d/中的SE3表示位姿,它实质上是四元数而非李代数.
 * **********************************************/

int main(int argc, char **argv) {
    if (argc != 2) {
        cout << "Usage: pose_graph_g2o_SE3 sphere.g2o" << endl;
        return 1;
    }
    ifstream fin(argv[1]);
    if (!fin) {
        cout << "file " << argv[1] << " does not exist." << endl;
        return 1;
    }

    // 设定g2o
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType;
    typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;
    auto solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
    g2o::SparseOptimizer optimizer;     // 图模型
    optimizer.setAlgorithm(solver);   // 设置求解器
    optimizer.setVerbose(true);       // 打开调试输出

    int vertexCnt = 0, edgeCnt = 0; // 顶点和边的数量
    while (!fin.eof()) {
        string name;
        fin >> name;
        if (name == "VERTEX_SE3:QUAT") {
            // SE3 顶点
            g2o::VertexSE3 *v = new g2o::VertexSE3();
            int index = 0;
            fin >> index;
            v->setId(index);
            v->read(fin);
            optimizer.addVertex(v);
            vertexCnt++;
            if (index == 0)
                v->setFixed(true);
        } else if (name == "EDGE_SE3:QUAT") {
            // SE3-SE3 边
            g2o::EdgeSE3 *e = new g2o::EdgeSE3();
            int idx1, idx2;     // 关联的两个顶点
            fin >> idx1 >> idx2;
            e->setId(edgeCnt++);
            e->setVertex(0, optimizer.vertices()[idx1]);
            e->setVertex(1, optimizer.vertices()[idx2]);
            e->read(fin);
            optimizer.addEdge(e);
        }
        if (!fin.good()) break;
    }

    cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;

    cout << "optimizing ..." << endl;
    optimizer.initializeOptimization();
    optimizer.optimize(30);

    cout << "saving optimization results ..." << endl;
    optimizer.save("result.g2o");

    return 0;
}

李代数上的位姿图优化

雅可比的计算过程,方法可以二选一:
方法1:不提供雅可比计算函数,让g2o自定计算数值雅可比。
方法2:提供完整或近似的雅可比计算过程。

ch10\pose_graph_g2o_lie_algebra.cpp
这里JRInv()函数提供近似的雅可比。

/************************************************
 * 本程序演示如何用g2o solver进行位姿图优化
 * sphere.g2o是人工生成的一个Pose graph,我们来优化它。
 * 尽管可以直接通过load函数读取整个图,但我们还是自己来实现读取代码,以期获得更深刻的理解
 * 本节使用李代数表达位姿图,节点和边的方式为自定义
 * **********************************************/

typedef Matrix<double, 6, 6> Matrix6d;

// 给定误差求J_R^{-1}的近似
Matrix6d JRInv(const SE3d &e) {
    Matrix6d J;
    J.block(0, 0, 3, 3) = SO3d::hat(e.so3().log());
    J.block(0, 3, 3, 3) = SO3d::hat(e.translation());
    J.block(3, 0, 3, 3) = Matrix3d::Zero(3, 3);
    J.block(3, 3, 3, 3) = SO3d::hat(e.so3().log());
    // J = J * 0.5 + Matrix6d::Identity();
    J = Matrix6d::Identity();    // try Identity if you want
    return J;
}

// 李代数顶点
typedef Matrix<double, 6, 1> Vector6d;

class VertexSE3LieAlgebra : public g2o::BaseVertex<6, SE3d> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW

    virtual bool read(istream &is) override {
        double data[7];
        for (int i = 0; i < 7; i++)
            is >> data[i];
        setEstimate(SE3d(
            Quaterniond(data[6], data[3], data[4], data[5]),
            Vector3d(data[0], data[1], data[2])
        ));
    }

    virtual bool write(ostream &os) const override {
        os << id() << " ";
        Quaterniond q = _estimate.unit_quaternion();
        os << _estimate.translation().transpose() << " ";
        os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << endl;
        return true;
    }

    virtual void setToOriginImpl() override {
        _estimate = SE3d();
    }

    // 左乘更新
    virtual void oplusImpl(const double *update) override {
        Vector6d upd;
        upd << update[0], update[1], update[2], update[3], update[4], update[5];
        _estimate = SE3d::exp(upd) * _estimate;
    }
};

// 两个李代数节点之边
class EdgeSE3LieAlgebra : public g2o::BaseBinaryEdge<6, SE3d, VertexSE3LieAlgebra, VertexSE3LieAlgebra> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW

    virtual bool read(istream &is) override {
        double data[7];
        for (int i = 0; i < 7; i++)
            is >> data[i];
        Quaterniond q(data[6], data[3], data[4], data[5]);
        q.normalize();
        setMeasurement(SE3d(q, Vector3d(data[0], data[1], data[2])));
        for (int i = 0; i < information().rows() && is.good(); i++)
            for (int j = i; j < information().cols() && is.good(); j++) {
                is >> information()(i, j);
                if (i != j)
                    information()(j, i) = information()(i, j);
            }
        return true;
    }

    virtual bool write(ostream &os) const override {
        VertexSE3LieAlgebra *v1 = static_cast<VertexSE3LieAlgebra *> (_vertices[0]);
        VertexSE3LieAlgebra *v2 = static_cast<VertexSE3LieAlgebra *> (_vertices[1]);
        os << v1->id() << " " << v2->id() << " ";
        SE3d m = _measurement;
        Eigen::Quaterniond q = m.unit_quaternion();
        os << m.translation().transpose() << " ";
        os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << " ";

        // information matrix 
        for (int i = 0; i < information().rows(); i++)
            for (int j = i; j < information().cols(); j++) {
                os << information()(i, j) << " ";
            }
        os << endl;
        return true;
    }

    // 误差计算与书中推导一致
    virtual void computeError() override {
        SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();
        SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();
        _error = (_measurement.inverse() * v1.inverse() * v2).log();
    }

    // 雅可比计算
    virtual void linearizeOplus() override {
        SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();
        SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();
        Matrix6d J = JRInv(SE3d::exp(_error));
        // 尝试把J近似为I?
        _jacobianOplusXi = -J * v2.inverse().Adj();
        _jacobianOplusXj = J * v2.inverse().Adj();
    }
};

int main(int argc, char **argv) {
    if (argc != 2) {
        cout << "Usage: pose_graph_g2o_SE3_lie sphere.g2o" << endl;
        return 1;
    }
    ifstream fin(argv[1]);
    if (!fin) {
        cout << "file " << argv[1] << " does not exist." << endl;
        return 1;
    }

    // 设定g2o
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType;
    typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;
    auto solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
    g2o::SparseOptimizer optimizer;     // 图模型
    optimizer.setAlgorithm(solver);   // 设置求解器
    optimizer.setVerbose(true);       // 打开调试输出

    int vertexCnt = 0, edgeCnt = 0; // 顶点和边的数量

    vector<VertexSE3LieAlgebra *> vectices;
    vector<EdgeSE3LieAlgebra *> edges;
    while (!fin.eof()) {
        string name;
        fin >> name;
        if (name == "VERTEX_SE3:QUAT") {
            // 顶点
            VertexSE3LieAlgebra *v = new VertexSE3LieAlgebra();
            int index = 0;
            fin >> index;
            v->setId(index);
            v->read(fin);
            optimizer.addVertex(v);
            vertexCnt++;
            vectices.push_back(v);
            if (index == 0)
                v->setFixed(true);
        } else if (name == "EDGE_SE3:QUAT") {
            // SE3-SE3 边
            EdgeSE3LieAlgebra *e = new EdgeSE3LieAlgebra();
            int idx1, idx2;     // 关联的两个顶点
            fin >> idx1 >> idx2;
            e->setId(edgeCnt++);
            e->setVertex(0, optimizer.vertices()[idx1]);
            e->setVertex(1, optimizer.vertices()[idx2]);
            e->read(fin);
            optimizer.addEdge(e);
            edges.push_back(e);
        }
        if (!fin.good()) break;
    }

    cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;

    cout << "optimizing ..." << endl;
    optimizer.initializeOptimization();
    optimizer.optimize(30);

    cout << "saving optimization results ..." << endl;

    // 因为用了自定义顶点且没有向g2o注册,这里保存自己来实现
    // 伪装成 SE3 顶点和边,让 g2o_viewer 可以认出
    ofstream fout("result_lie.g2o");
    for (VertexSE3LieAlgebra *v:vectices) {
        fout << "VERTEX_SE3:QUAT ";
        v->write(fout);
    }
    for (EdgeSE3LieAlgebra *e:edges) {
        fout << "EDGE_SE3:QUAT ";
        e->write(fout);
    }
    fout.close();
    return 0;
}

参考资料:
1、书籍:《视觉SLAM十四讲:从理论到实践(第2版)》
2、代码:https://github.com/gaoxiang12/slambook2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaohualan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值