HDU-1159 Common Subsequence(最长公共子序列附带输出序列代码)

本文介绍如何使用动态规划解决最长公共子序列问题,并提供两段代码示例:一段用于计算最长公共子序列的长度,另一段则进一步输出该子序列。通过输入两个字符串,算法能够找出它们之间的最长公共子序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HDU-1159 Common Subsequence(动态规划)

 

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming    contest 
abcd           mnp

Sample Output

4
2
0

 

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{ 
    char a[1000],b[1000];
   int dp[1000][1000];          //dp[i][j]表示一条长度为i,另一条长度为j,且以a[i],b[j]为结尾的的
                                //最长公共子序列                
 while(scanf("%s%s",a,b)!=EOF)
 {
     memset(dp,0,sizeof(dp));
   int la=strlen(a);
   int lb=strlen(b);
     for(int i=1;i<=la;i++)  
     for(int j=1;j<=lb;j++)
            {
             if(a[i-1]==b[j-1])            //a是从0开始,而dp是从1开始 
             dp[i][j]=dp[i-1][j-1]+1;      //dp表示最大的公共子串 
             else
             dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
               }
 printf("%d\n",dp[la][lb]);
}
 return 0;
} 

 

输出序列代码

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char a[1000],b[1000];
int dp[1000][1000],flag[1000][1000];
void LCS()
{
        int i,j;
        int len1=strlen(a);
        int len2=strlen(b);
        for(i=1;i<=len1;i++)
        for(j=1;j<=len2;j++)
        {
            if(a[i-1]==b[j-1])  {dp[i][j]=dp[i-1][j-1]+1,flag[i][j]=0;}
            else
            {
                if(dp[i-1][j]>=dp[i][j-1])     {dp[i][j]=dp[i-1][j],  flag[i][j]=1;}
                else if(dp[i-1][j]<dp[i][j-1]) {dp[i][j]=dp[i][j-1],  flag[i][j]=-1;}
            }
        }
}
void PrintLCS(int i,int j)
{
    if(i==0||j==0) return ;
    if(flag[i][j]==0)
    {
        PrintLCS(i-1,j-1);   //因为有先后顺序。。。
        printf("%c",a[i-1]);
    }
    else if(flag[i][j]==1)
    PrintLCS(i-1,j);
    else if(flag[i][j]==-1)
    PrintLCS(i,j-1);
}
int main()
{

    while(scanf("%s%s",a,b)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        memset(flag,0,sizeof(flag));
        LCS();
        PrintLCS(strlen(a),strlen(b));
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值