from keras import Input, layers
input_tensor = Input(shape=(32,))# 一个张量
dense = layers.Dense(32, activation='relu')# 一个层是一个函数
output_tensor = dense(input_tensor)# 可以在一个张量上调用一个层,它会返回一个张量
from keras.models import Sequential, Model
from keras import layers
from keras import Input
seq_model = Sequential()# 前面学过的Sequential模型
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))print(seq_model.summary())# 对应的函数式API实现
input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)# Model类将输入张量和输出张量转换为一个模型
model = Model(input_tensor, output_tensor)print(model.summary())
# 用函数式API实现双输入问答模型from keras.models import Model
from keras import layers
from keras import Input
text_vocabulary_size =10000
question_vocabulary_size =10000
answer_vocabulary_size