蓝桥杯练习

C++控制浮点数输出

 

问题描述
给定圆的半径r,求圆的面积。
输入格式
输入包含一个整数r,表示圆的半径。
输出格式
输出一行,包含一个实数,四舍五入保留小数点后7位,表示圆的面积。

说明:在本题中,输入是一个整数,但是输出是一个实数。
对于实数输出的问题,请一定看清楚实数输出的要求,比如本题中要求保留小数点后7位,则你的程序必须严格的输出7位小数,输出过多或者过少的小数位数都是不行的,都会被认为错误。
实数输出的问题如果没有特别说明,舍入都是按四舍五入进行。



样例输入
4
样例输出
50.2654825
数据规模与约定
1 <= r <= 10000。
提示
本题对精度要求较高,请注意π的值应该取较精确的值。你可以使用常量来表示π,比如PI=3.14159265358979323,也可以使用数学公式来求π,比如PI=atan(1.0)*4。



[url=][/url]
1 #include<iostream> 2 #include<iomanip> 3 using namespace std; 4 5 int main(){ 6     double PI = 3.14159265358979323; 7     int r; 8     cin >> r; 9     cout << fixed << setprecision(7) << PI*r*r;10 }[url=][/url]
 

个人总结:
  题目很简单,需要注意的地方是C++中如何控制输出。
知识拓展
  C++默认浮点数输出有效位数是 6 位(若前面整数位数大于 6 位,使用科学计数法输出),而通过以下几种方式可以更改输出精度:
  1.使用 setprecision(n) 即可设置浮点数输出的有效位数(若前面整数位数大于 n 位,使用科学计数法输出)
  2.使用 setiosflags(ios::fixed) 或 fixed,表示对小数点后面数字的输出精度进行控制,所以,和 setprecision(n) 结合使用即可设置浮点数小数点后面数字的输出精度,位数不足的补零。
  以上均采用 “四舍五入” 的方法控制精度,三个控制符均包含在 std 命名空间中。

 

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值