熵: 熵(entropy)指的是体系的混乱的程度,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。
信息熵(香农熵): 是一种信息的度量方式,表示信息的混乱程度,也就是说:信息越有序,信息熵越低。
信息增益: 在划分数据集前后信息发生的变化称为信息增益。
为了计算熵,我们需要求关于H(X)在以p(x)分布下的信息量的数学期望:
条件熵:条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性。随机变量X给定的条件下随机变量Y的条件熵(conditional entropy)H(Y|X),定义为X给定条件下Y的条件概率分布的熵对X的数学期望:
联合熵:对服从联合分布为P(x,y)的一对离散随机变量(X,Y),其联合熵H(X,Y)可表示为:
相对熵:又称交叉熵,KL散度等
如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异。P(X),Q(X)的比值取对数之后,在P(X)的概率分布上求期望:
交叉熵:
计算给定数据集的香农熵的函数:
def calcShannonEnt(dataSet):
# 求list的长度,表示计算参与训练的数据量
numEntries = len(dataSet)
# 计算分类标签label出现的次数
labelCounts = {}
# the the number of unique elements and their occurance
for featVec in dataSet:
# 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签
currentLabel = featVec[-1]
# 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
# 对于 label 标签的占比,求出 label 标签的香农熵
shannonEnt = 0.0
for key in labelCounts:
# 使用所有类标签的发生频率计算类别出现的概率。
prob = float(labelCounts[key])/numEntries
# 计算香农熵,以 2 为底求对数
shannonEnt -= prob * log(prob, 2)
return shannonEnt