决策树算法

本文深入解析决策树算法,包括特征选择、决策树生成与剪枝等核心步骤,通过实例演示决策树在分类任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决策树算法

  决策树是一种基本的分类与回归方法。本文主要讨论用于分类的决策树。在分类问题中,表示基于特征空间对实例进行分类,可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型,在预测的时候,将新的数据输入决策树模型中进行分类。

决策树学习三个步骤:

一、特征选择

选择使信息增益(ID3算法)最大或者信息增益比(C4.5算法)最大的特征。

信息增益:

  在信息论和概率统计中,用熵来表示随机变量不确定性的度量。设X是一个取有限个值的离散随机变量,其概率分布为P(X=xi)=pi,i=1,2…n,则随机变量X的熵定义为
在这里插入图片描述
条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性,定义为X给定条件下Y的条件概率分布的熵对X的数学期望,如下,pi=P(X=xi),i=1,2…n。在这里插入图片描述
  信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度。特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即g(D,A)=H(D)-H(D|A),显然对于数据集D而言,信息增益依赖于特征,不同的特征往往具有不同的信息增益,信息增益大的特征具有更强的分类能力。根据信息增益准则的特征选择方法是:对训练数据集(或子集)D,计算其每个特征的信息增益,并比较它们的大小,选择信息增益最大的特征。
  设训练数据集为D,|D|表示其样本容量,即样本个数。设有K个类Ck,k=1,2,…,K,|Ck|为属于类Ck的样本个数,
在这里插入图片描述
设特征A有n个不同的取值{a1,a2,…,an},根据特征A的取值将D划分为n个子集D1,D2,…,Dn,|Di|为Di的样本个数
在这里插入图片描述
记子集Di中属于类Ck的样本的集合为Dik,|Dik|为Dik的样本个数。

信息增益的算法如下:

输入:训练数据集D和特征A;
输出:特征A对训练数据集D的信息增益g(D,A).
(1)计算数据集D的经验熵H(D)
在这里插入图片描述
(2)计算特征A对数据集D的经验条件熵H(D|A)
在这里插入图片描述
(3)计算信息增益
在这里插入图片描述

范例


在这里插入图片描述

二、决策树生成

从根节点开始,对结点计算所以可能的特征的信息增益(ID3算法)或信息增益比(C4.5)算法,选择信息增益(比)最大的特征作为结点的特征,由该特征的不同取值建立子结点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止,最后得到一个决策树。

三、决策树剪枝

决策树生成算法递归地产生决策树,直到不能继续下去为止。这样产生的树往往对训练数据的分类很准确,但对未知的测试数据的分类却没有那么正确,也就是出现过拟合现象。过拟合原因在于学习时过多地考虑如何提高对训练数据的正确分类,从而构建出过于复杂的决策树。解决这个问题的办法是考虑决策树的复杂度,对已生成的决策树进行简化即剪枝过程,从已经生成的树上裁掉一些子树或叶结点,并将其根节点或父结点作为新的叶结点,从而简化分类树模型。

决策树项目实例:判断鱼类和非鱼类

项目概述
根据以下 2 个特征,将动物分成两类:鱼类和非鱼类。
特征:

  • 不浮出水面是否可以生存
  • 是否有脚蹼

收集数据:
在这里插入图片描述
项目代码如下:

from math import log
import operator
import Ch03.treePlotter as dtPlot

def createDataSet():
    """DateSet 基础数据集
    Args:
        无需传入参数
    Returns:
        返回数据集和对应的label标签
    """
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    # dataSet = [['yes'],
    #         ['yes'],
    #         ['no'],
    #         ['no'],
    #         ['no']]
    # labels  露出水面   脚蹼
    labels = ['no surfacing', 'flippers']
    # change to discrete values
    return dataSet, labels

----#计算给定数据集的香农熵的函数
def calcShannonEnt(dataSet):
    # 求list的长度,表示计算参与训练的数据量
    numEntries = len(dataSet)
    # 计算分类标签label出现的次数
    labelCounts = {}
    # the the number of unique elements and their occurrence
    for featVec in dataSet:
        # 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签
        currentLabel = featVec[-1]
        # 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1

    # 对于 label 标签的占比,求出 label 标签的香农熵
    shannonEnt = 0.0
    for key in labelCounts:
        # 使用所有类标签的发生频率计算类别出现的概率。
        prob = float(labelCounts[key])/numEntries
        # 计算香农熵,以 2 为底求对数
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

-----#按照给定特征划分数据集将指定特征的特征值等于 value 的行剩下列作为子数据集。
def splitDataSet(dataSet, index, value):
    """splitDataSet(通过遍历dataSet数据集,求出index对应的colnum列的值为value的行)
        就是依据index列进行分类,如果index列的数据等于 value的时候,就要将 index 划分到我们创建的新的数据集中
    Args:
        dataSet 数据集                 待划分的数据集
        index 表示每一行的index列        划分数据集的特征
        value 表示index列对应的value值   需要返回的特征的值。
    Returns:
        index列为value的数据集【该数据集需要排除index列】
    """
    retDataSet = []
    for featVec in dataSet: 
        # index列为value的数据集【该数据集需要排除index列】
        # 判断index列的值是否为value
        if featVec[index] == value:
            # chop out index used for splitting
            # [:index]表示前index行,即若 index 为2,就是取 featVec 的前 index 行
            reducedFeatVec = featVec[:index]
            '''
            extend和append的区别
            music_media.append(object) 向列表中添加一个对象object
            music_media.extend(sequence) 把一个序列seq的内容添加到列表中 (跟 += 在list运用类似, music_media += sequence)
            1、使用append的时候,是将object看作一个对象,整体打包添加到music_media对象中。
            2、使用extend的时候,是将sequence看作一个序列,将这个序列和music_media序列合并,并放在其后面。
            music_media = []
            music_media.extend([1,2,3])
            print music_media
            #结果:
            #[1, 2, 3]
            music_media.append([4,5,6])
            print music_media
            #结果:
            #[1, 2, 3, [4, 5, 6]]
            music_media.extend([7,8,9])
            print music_media
            #结果:
            #[1, 2, 3, [4, 5, 6], 7, 8, 9]
            '''
            reducedFeatVec.extend(featVec[index+1:])
            # [index+1:]表示从跳过 index 的 index+1行,取接下来的数据
            # 收集结果值 index列为value的行【该行需要排除index列】
            retDataSet.append(reducedFeatVec)
    return retDataSet

----#选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet):
    """chooseBestFeatureToSplit(选择最好的特征)

    Args:
        dataSet 数据集
    Returns:
        bestFeature 最优的特征列
    """
    # 求第一行有多少列的 Feature, 最后一列是label列嘛
    numFeatures = len(dataSet[0]) - 1
    # 数据集的原始信息熵
    baseEntropy = calcShannonEnt(dataSet)
    # 最优的信息增益值, 和最优的Featurn编号
    bestInfoGain, bestFeature = 0.0, -1
    # iterate over all the features
    for i in range(numFeatures):
        # create a list of all the examples of this feature
        # 获取对应的feature下的所有数据
        featList = [example[i] for example in dataSet]
        # get a set of unique values
        # 获取剔重后的集合,使用set对list数据进行去重
        uniqueVals = set(featList)
        # 创建一个临时的信息熵
        newEntropy = 0.0
        # 遍历某一列的value集合,计算该列的信息熵 
        # 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            # 计算概率
            prob = len(subDataSet)/float(len(dataSet))
            # 计算信息熵
            newEntropy += prob * calcShannonEnt(subDataSet)
        # gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值
        # 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。
        infoGain = baseEntropy - newEntropy
        print 'infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

def majorityCnt(classList):
    """majorityCnt(选择出现次数最多的一个结果)
    Args:
        classList label列的集合
    Returns:
        bestFeature 最优的特征列
    """
    # -----------majorityCnt的第一种方式 start------------------------------------
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    # 倒叙排列classCount得到一个字典集合,然后取出第一个就是结果(yes/no),即出现次数最多的结果
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    # print 'sortedClassCount:', sortedClassCount
    return sortedClassCount[0][0]


----#创建树的函数代码如下:
def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
    # 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。
    # count() 函数是统计括号中的值在list中出现的次数
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果
    # 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)

    # 选择最优的列,得到最优列对应的label含义
    bestFeat = chooseBestFeatureToSplit(dataSet)
    # 获取label的名称
    bestFeatLabel = labels[bestFeat]
    # 初始化myTree
    myTree = {bestFeatLabel: {}}
    # 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改
    # 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
    del(labels[bestFeat])
    # 取出最优列,然后它的branch做分类
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        # 求出剩余的标签label
        subLabels = labels[:]
        # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree()
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
        # print 'myTree', value, myTree
    return myTree

----#测试算法:使用决策树执行分类
def classify(inputTree, featLabels, testVec):
    """classify(给输入的节点,进行分类)

    Args:
        inputTree  决策树模型
        featLabels Feature标签对应的名称
        testVec    测试输入的数据
    Returns:
        classLabel 分类的结果值,需要映射label才能知道名称
    """
    # 获取tree的根节点对于的key值
    firstStr = inputTree.keys()[0]
    # 通过key得到根节点对应的value
    secondDict = inputTree[firstStr]
    # 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类
    featIndex = featLabels.index(firstStr)
    # 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat
    # 判断分枝是否结束: 判断valueOfFeat是否是dict类型
    if isinstance(valueOfFeat, dict):
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else:
        classLabel = valueOfFeat
    return classLabel

def storeTree(inputTree, filename):
    import pickle
    # -------------- 第一种方法 start --------------
    fw = open(filename, 'wb')
    pickle.dump(inputTree, fw)
    fw.close()
    # -------------- 第一种方法 end --------------

    # -------------- 第二种方法 start --------------
    with open(filename, 'wb') as fw:
        pickle.dump(inputTree, fw)
    # -------------- 第二种方法 start --------------


def grabTree(filename):
    import pickle
    fr = open(filename,'rb')
    return pickle.load(fr)

def get_tree_height(tree):
    """
     Desc:
        递归获得决策树的高度
    Args:
        tree
    Returns:
        树高
    """

    if not isinstance(tree, dict):
        return 1

    child_trees = tree.values()[0].values()

    # 遍历子树, 获得子树的最大高度
    max_height = 0
    for child_tree in child_trees:
        child_tree_height = get_tree_height(child_tree)

        if child_tree_height > max_height:
            max_height = child_tree_height

    return max_height + 1


def fishTest():
    # 1.创建数据和结果标签
    myDat, labels = createDataSet()
    # print myDat, labels

    # 计算label分类标签的香农熵
    # calcShannonEnt(myDat)

    # # 求第0列 为 1/0的列的数据集【排除第0列】
    # print '1---', splitDataSet(myDat, 0, 1)
    # print '0---', splitDataSet(myDat, 0, 0)

    # # 计算最好的信息增益的列
    # print chooseBestFeatureToSplit(myDat)

    import copy
    myTree = createTree(myDat, copy.deepcopy(labels))
    print(myTree)
    # [1, 1]表示要取的分支上的节点位置,对应的结果值
    print(classify(myTree, labels, [1, 1]))
    
    # 获得树的高度
    print(get_tree_height(myTree))

    # 画图可视化展现
    dtPlot.createPlot(myTree)

if __name__ == "__main__":
    fishTest()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值