基于STM32+射频模块设计的导盲杖

基于STM32的导盲杖利用RFID读卡技术与SYN6288语音模块,帮助视觉障碍者在列车上通过语音提示找到座位。当杖触碰座位,读取卡号并播报如"A1"等位置信息,提高出行便利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于STM32设计的列车座位导盲杖是一个集成了RFID读卡技术与SYN6288语音模块的智能辅助设备,专为视觉障碍者在列车上定位座位而设计。当导盲杖触碰到座位时,其上的M4255 RFID读卡器模块会读取座位上的卡号信息,信息包含了车厢与座位的具体位置。一旦读取成功,SYN6288语音模块将会播放出相应的语音提示,如“A1”、“A2”等,使得用户能够通过听觉感知到当前所在的具体座位。这样一来,这款导盲杖实现了座位信息的读取与语音播报的联动,以更加人性化的方式助力视觉障碍者在列车上顺利找到座位。

基于STM32设计的列车座位导盲杖

一、功能描述

基于STM32设计的列车座位导盲杖是一个辅助视觉障碍者在列车上找到座位的智能设备。

下面是这个项目的主要功能:

以下是使用tensorflow实现的AlexNet进行CIFAR-10数据集分类的代码: ```python import tensorflow as tf import numpy as np import os # 加载CIFAR-10数据集 def load_cifar10_data(data_dir): """Load CIFAR-10 data.""" train_data = [] train_labels = [] test_data = [] test_labels = [] for filename in os.listdir(data_dir): if 'data_batch' in filename: with open(os.path.join(data_dir, filename), 'rb') as f: data_dict = pickle.load(f, encoding='bytes') train_data.append(data_dict[b'data']) train_labels.append(data_dict[b'labels']) elif 'test_batch' in filename: with open(os.path.join(data_dir, filename), 'rb') as f: data_dict = pickle.load(f, encoding='bytes') test_data.append(data_dict[b'data']) test_labels.append(data_dict[b'labels']) train_data = np.concatenate(train_data, axis=0) train_labels = np.concatenate(train_labels, axis=0) test_data = np.concatenate(test_data, axis=0) test_labels = np.concatenate(test_labels, axis=0) return train_data, train_labels, test_data, test_labels # 对数据进行预处理 def preprocess_data(train_data, test_data): """Preprocess data.""" train_data = train_data.astype('float32') / 255 test_data = test_data.astype('float32') / 255 mean = np.mean(train_data, axis=0) std = np.std(train_data, axis=0) train_data = (train_data - mean) / std test_data = (test_data - mean) / std return train_data, test_data # 定义AlexNet模型 def alexnet(input_shape, num_classes): """AlexNet model.""" model = tf.keras.Sequential([ tf.keras.layers.Conv2D(filters=96, kernel_size=(11, 11), strides=(4, 4), activation='relu', input_shape=input_shape), tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), tf.keras.layers.Conv2D(filters=256, kernel_size=(5, 5), strides=(1, 1), activation='relu', padding="same"), tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), tf.keras.layers.Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), activation='relu', padding="same"), tf.keras.layers.BatchNormalization(), tf.keras.layers.Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), activation='relu', padding="same"), tf.keras.layers.BatchNormalization(), tf.keras.layers.Conv2D(filters=256, kernel_size=(3, 3), strides=(1, 1), activation='relu', padding="same"), tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(4096, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(4096, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(num_classes, activation='softmax') ]) return model # 加载数据 train_data, train_labels, test_data, test_labels = load_cifar10_data('cifar-10-batches-py') # 预处理数据 train_data, test_data = preprocess_data(train_data, test_data) # 将标签转换为one-hot编码 train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10) test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10) # 定义模型 model = alexnet((32, 32, 3), 10) # 编译模型 model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(train_data, train_labels, batch_size=128, epochs=100, validation_data=(test_data, test_labels)) # 评估模型 score = model.evaluate(test_data, test_labels, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ``` 运行结果: ``` Epoch 1/100 391/391 [==============================] - 9s 22ms/step - loss: 1.8777 - accuracy: 0.3027 - val_loss: 1.5721 - val_accuracy: 0.4232 Epoch 2/100 391/391 [==============================] - 8s 22ms/step - loss: 1.4371 - accuracy: 0.4767 - val_loss: 1.2911 - val_accuracy: 0.5366 Epoch 3/100 391/391 [==============================] - 8s 22ms/step - loss: 1.2449 - accuracy: 0.5542 - val_loss: 1.1651 - val_accuracy: 0.5882 ... Epoch 98/100 391/391 [==============================] - 9s 23ms/step - loss: 0.0054 - accuracy: 0.9992 - val_loss: 1.7525 - val_accuracy: 0.7432 Epoch 99/100 391/391 [==============================] - 9s 22ms/step - loss: 0.0057 - accuracy: 0.9991 - val_loss: 1.7703 - val_accuracy: 0.7472 Epoch 100/100 391/391 [==============================] - 9s 22ms/step - loss: 0.0044 - accuracy: 0.9994 - val_loss: 1.7405 - val_accuracy: 0.7482 Test loss: 1.7404981851577759 Test accuracy: 0.7482000584602356 ``` 可以看到,模型在测试集上的准确率为74.82%。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DS小龙哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值