stable diffusion(Lora的训练)

以坤坤为例,上网随便找了几个坤坤的人脸图像,作为训练的数据集

1 训练环境搭建

建议看一遍教程,虽然这个up主好像不是很专业的样子,不过流程差不多是这样的,重点关注一下虚拟环境搭建完之后,在终端选择配置的操作,就是一堆yes no,的选项,跟着视频来就行了。

1.1 git clone 项目

本地找个训练环境存放的文件夹,利用git工具拉取训练webui环境

git clone https://github.com/bmaltais/kohya_ss.git

拉取后会有这样的目录,执行红框内的setup.bat文件就能安装训练的虚拟环境了(和之前搭建的SD框架虚拟环境类似,但是安装的python库版本会有所出入,如果不想有版本冲突的话,建议直接在这里就不需要操作任何配置了)

1.2 cuda加速安装

项目网站上有安装的教程,用于加速训练过程的,支持30和40系显卡

1.3 打开训练的webui

和打开SD webui类似,直接点击这个目录下的gui.bat文件,看到url网址出现就能打开网站了。

2 图片的预处理

简单来说训练过程中需要图像和对应的图像描述,类似于其他机器学习中的数据和标签。在stable diffusion的webui里可以找到图像预处理模块。输入到lora训练网络中的数据集应该长这样:

结果展示

2.1 裁剪

因为本文一开头搜集到的图像分辨率不一样,训练过程中最好使用同一的分辨率,这里可以通过剪裁网站批量处理人物图像。这里推荐使用512*512的分辨率。这个网站还能同一重命名图片,有强迫症的人很支持。

2.2 利用stable diffusion webui预处理

在ui的这个界面输入刚刚批量裁剪完的图像,和输出的目录。就能得到以下21张512*512并且带有描述文本的训练集了。

……这里坤坤的被预处理自动标记为1girl了,大家可以手动修改一下这个标签,然后检查其他的描述是否存在不合理的情况,酌情删除和增加即可。

3 模型的训练和使用

3.1 文件路径安排

回到lora训练的webui上,在dreambooth LoRA栏目下添加源模型,因为本次训练的是真实人物模型,笔者就选择了这个比较合适的大模型。

子栏目Folders按照这个格式放置刚刚处理的图片,这里的文件命名只需要注意10_cxk,前面的数字,是每次训练过程中网络训练单张图片的次数。其余的路径名大家可以自定义。

子栏目training parameter就是训练过程中需要炼丹的参数,大家根据自己电脑的配置来修改,数据量大的,显存足够的情况下,batchsize可以调高。学习率和epoch次数都是比较常见的修改参数。这里用了8个epoch去训练,每次epoch结束后都会保存当前的Lora模型。结果是这样的:

大家可以根据训练的loss值来选择计算机认为较好的结果,当然loss越小拟合得越好,太小则会过拟合,泛化性能不足。

3.2 lora模型挑选

刚刚一共训练了八个cxk_lora模型,但看loss值不好挑选最佳的模型,这里回到stable diffusion webui里,利用脚本来观察那个lora模型比较好。

3.2.1 插件安装

需要安装红框里的插件,才能利用脚本一次性使用多个lora进行对比,当然,大家可以不用插件,一个一个去生成,但是就是会比较麻烦,有插件就方便一些。

3.2.2 比较模型

把刚刚整完的lora模型放到这个插件的model/lora目录下,就能在界面看到这样的效果。记得大模型要选择你训练的时候的基底模型。附加网络随机选取,这个插件不用选择开启。但是网络类型和模型是需要选取的,为的是让后面的脚本能识别你要进行对比的lora模型。

脚本里这样设置,选择XYZ 绘图脚本

X轴类型选择刚刚插件内的额外网络模型(也就是你的Lora模型)

Y轴选择这个模型需要运用的程度,等价于prompt语法中的lora:cxk\_model\_xxx:0.5,因为有些情况下,会出现模型的过拟合,若是应用占比过大,反而效果不好。

出图结果:

可以看到拉,cxk_lora-7这个模型配合上0.9左右的占比,实现的效果比较好。

3.3 lora应用

选择刚刚合适的模型,放入到这个目录下(其实应该可以修改代码,这样就不用复制来复制去了。。还占用空间,不过fine拉,看代码也是个很长的过程)

然后就能在stable diffusion webui里愉快地出图啦~

这里的插件和脚本都不需要开启了。记得关闭。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

请添加图片描述

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值