Leetcode——104. Maximum Depth of Binary Tree

本文介绍了解决LeetCode上二叉树最大深度问题的两种方法:递归法和层级遍历法。递归法通过左右子树的最大深度加一得出结果;层级遍历法则利用队列进行逐层节点数的统计。

题目原址

https://leetcode.com/problems/maximum-depth-of-binary-tree/description/

题目描述

Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Note: A leaf is a node with no children.

Example:
Given binary tree [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7

return its depth = 3.

AC代码

示例一:使用递归

class Solution {
    public int maxDepth(TreeNode root) {
        if(root == null)
            return 0;

        return Math.max( maxDepth(root.left), maxDepth(root.right)) + 1;          
    }
}

示例二:使用层的方法,与题637题一样。Leetcode——637. Average of Levels in Binary Tree

class Solution {
    public int maxDepth(TreeNode root) {
        int depth = 0;
        if(root == null)
            return depth;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        while(queue.size() > 0) {
            int size = queue.size();
            depth ++;
            for(int i = 0; i < size; i++) {
                TreeNode tn = queue.poll();
                if(tn.left != null)
                    queue.add(tn.left);
                if(tn.right != null)
                    queue.add(tn.right);
            }
        }
        return depth;
    }
}
### LeetCode 刷题推荐列表与学习路径 在 LeetCode 上进行刷题时,制定一个合理的计划非常重要。以下是一个基于算法分类的学习路径和推荐题目列表[^1]: #### 学习路径 1. **基础算法理论** 在开始刷题之前,建议先通过视频或书籍了解基本的算法理论。例如,分治法、贪心算法、动态规划、二叉搜索树(BST)、图等概念[^1]。 2. **数据结构基础** 熟悉常见的数据结构,包括数组、链表、栈、队列、哈希表、树、图等。确保对这些数据结构的操作有深刻理解。 3. **分模块刷题** 按照以下顺序逐步深入: - 树:从简单的遍历问题(如前序、中序、后序遍历)开始,逐渐过渡到复杂问题(如二叉搜索树验证、平衡二叉树等)。 - 图与回溯算法:学习图的表示方法(邻接矩阵、邻接表),并练习深度优先搜索(DFS)和广度优先搜索(BFS)。结合回溯算法解决组合问题、排列问题等。 - 贪心算法:选择一些经典的贪心问题(如活动选择问题、区间覆盖问题)进行练习。 - 动态规划:从简单的 DP 问题(如爬楼梯、斐波那契数列)入手,逐步掌握状态转移方程的设计技巧。 4. **刷题策略** 刷题时优先选择简单或中等难度的题目,并关注通过率较高的题目。这有助于建立信心并巩固基础知识[^1]。 #### 推荐题目列表 以下是按算法分类的 LeetCode 题目推荐列表: 1. **树** - [104. 二叉树的最大深度](https://leetcode-cn.com/problems/maximum-depth-of-binary-tree/) - [94. 二叉树的中序遍历](https://leetcode-cn.com/problems/binary-tree-inorder-traversal/) - [236. 二叉树的最近公共祖先](https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-search-tree/) 2. **图与回溯** - [79. 单词搜索](https://leetcode-cn.com/problems/word-search/) - [51. N皇后](https://leetcode-cn.com/problems/n-queens/) - [78. 子集](https://leetcode-cn.com/problems/subsets/) 3. **贪心** - [455. 分发饼干](https://leetcode-cn.com/problems/assign-cookies/) - [135. 分发糖果](https://leetcode-cn.com/problems/candy/) - [406. 根据身高重建队列](https://leetcode-cn.com/problems/queue-reconstruction-by-height/) 4. **动态规划** - [70. 爬楼梯](https://leetcode-cn.com/problems/climbing-stairs/) - [53. 最大子数组和](https://leetcode-cn.com/problems/maximum-subarray/) - [300. 最长递增子序列](https://leetcode-cn.com/problems/longest-increasing-subsequence/) #### 示例代码 以下是一个简单的动态规划问题示例——“不同路径”[^3]: ```python def uniquePaths(m, n): dp = [[1] * n for _ in range(m)] for i in range(1, m): for j in range(1, n): dp[i][j] = dp[i-1][j] + dp[i][j-1] return dp[-1][-1] # 测试用例 print(uniquePaths(3, 2)) # 输出:3 ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值