Description
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
Input
Output
Sample Input
2 3 4 5 0
Sample Output
1 3 59
这是一个欧拉函数的模板题,但是要longlong类型;
#include <iostream> using namespace std; long long p[1000005],ans[1000005]; /*int phi(int n) { int i,rea=n; for(int i=2;i*i<=n;i++) { if(n%i==0) { rea=rea-rea/i; while(n%i==0) n=n/i; } } if(n>1) rea=rea-rea/n; return rea; }*/这也是一种欧拉函数的写法; int main() { for(int i=1;i<1000005;i++) p[i]=i; for(int i=2;i<1000005;i=i+2) p[i]=p[i]/2; ans[1]=0;ans[2]=1; for(int i=3;i<1000005;i=i+2) { if(p[i]==i) { for(int j=i;j<1000005;j=j+i) p[j]=p[j]-p[j]/i; } } for(int i=3;i<1000005;i++) { ans[i]=ans[i-1]+p[i]; } int n; while(cin>>n) { if(n==0) break; else { cout<<ans[n]<<endl; } } return 0; }