欧拉函数

Description

The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are 
F2 = {1/2} 
F3 = {1/3, 1/2, 2/3} 
F4 = {1/4, 1/3, 1/2, 2/3, 3/4} 
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5} 

You task is to calculate the number of terms in the Farey sequence Fn.

Input

There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 10 6). There are no blank lines between cases. A line with a single 0 terminates the input.

Output

For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn. 

Sample Input

2
3
4
5
0

Sample Output

1
3
5

9

这是一个欧拉函数的模板题,但是要longlong类型;

#include <iostream> using namespace std; long long p[1000005],ans[1000005]; /*int phi(int n) {     int i,rea=n;     for(int i=2;i*i<=n;i++)     {         if(n%i==0)         {             rea=rea-rea/i;             while(n%i==0) n=n/i;         }     }     if(n>1)     rea=rea-rea/n;     return rea; }*/这也是一种欧拉函数的写法; int main() {     for(int i=1;i<1000005;i++)     p[i]=i;     for(int i=2;i<1000005;i=i+2)     p[i]=p[i]/2;     ans[1]=0;ans[2]=1;     for(int i=3;i<1000005;i=i+2)     {         if(p[i]==i)         {             for(int j=i;j<1000005;j=j+i)             p[j]=p[j]-p[j]/i;         }     }      for(int i=3;i<1000005;i++)      {          ans[i]=ans[i-1]+p[i];      }     int n;     while(cin>>n)     {         if(n==0)         break;         else         {             cout<<ans[n]<<endl;         }     }     return 0; }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值