[leetcode]210. Course Schedule II

本文介绍了解决课程安排问题的一种方法,通过使用拓扑排序来确定完成所有课程的有效顺序。提供了两种实现方式,包括基于BFS的实现和基于DFS的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://leetcode.com/problems/course-schedule-ii/tabs/description

 

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.

There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.

For example:

2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1]

4, [[1,0],[2,0],[3,1],[3,2]]

There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.

 

方法一:(BFS)

 

class Solution {
public:
    vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
        vector<unordered_set<int>> graph=make_graph(numCourses,prerequisites);
        vector<int> degrees=compute_indegree(numCourses,graph);
        queue<int> zeros;
        for(int i=0;i<numCourses;i++)
            if(!degrees[i])
                zeros.push(i);
        vector<int> toposort;
        for(int i=0;i<numCourses;i++)
        {
            if(zeros.empty()) return {};
            int zero=zeros.front();
            zeros.pop();
            toposort.push_back(zero);
            for(int neigh:graph[zero])
            {
                if(!--degrees[neigh])
                    zeros.push(neigh);
            }
        }
        return toposort;
    }
private:
    vector<unordered_set<int>> make_graph(int numCourses,vector<pair<int,int>>& prerequisites)
    {
        vector<unordered_set<int>> graph(numCourses);
        for(auto pre:prerequisites)
            graph[pre.second].insert(pre.first);
        return graph;
    }

    vector<int> compute_indegree(int numCourses,vector<unordered_set<int>>& graph)
    {
        vector<int> degrees(numCourses,0);
        for(auto neighbors:graph)
        {
            for(int neigh:neighbors)
            {
                degrees[neigh]++;
            }
        }
        return degrees;
    }
};

方法二:(DFS)

 

 

 

class Solution {
public:
    vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
        vector<unordered_set<int>> graph=make_graph(numCourses,prerequisites);
        vector<int> toposort;
        vector<bool> onpath(numCourses,false),visited(numCourses,false);
        for(int i=0;i<numCourses;i++)
        {
            if(!visited[i] dfs(graph,i,onpath,visited,toposort))
                return {};
        }
        reverse(toposort.begin(),toposort.end());
        return toposort;
    }
private:
    vector<unordered_set<int>> make_graph(int numCourses,vector<pair<int,int>>& prerequisites)
    {
        vector<unordered_set<int>> graph(numCourses);
        for(auto pre:prerequisites)
            graph[pre.second].insert(pre.first);
        return graph;
    }

    bool dfs(vector<unordered_set<int>>& graph,int node,vector<bool>& onpath,vector<bool>& visited,vector<int>& toposort)
    {
        if(visited[node]) return false;
        onpath[node]=visited[node]=true;
        for(int neigh:graph[node])
        {
            if(onpath[neigh] || dfs(graph,neigh,onpath,visited,toposort))
            {
                return true;
            }
        }
        toposort.push_back(node);
        return onpath[node]=false;
    }
};

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值