[leetcode]239. Sliding Window Maximum

本文介绍了一种高效求解滑动窗口最大值问题的方法,使用双端队列存储潜在的最大元素,确保每次滑动更新时能快速找到窗口内的最大值。通过具体实例展示了算法流程,并提供了C++实现代码。

题目链接:https://leetcode.com/problems/sliding-window-maximum/#/description

 

Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.

Window position                Max
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

Therefore, return the max sliding window as [3,3,5,5,6,7].

The basic idea is to use a deque (buffer) to save all currently potential "maximum" elements (i.e. the element in the current k-element window [i-k+1, i], and it is larger than the elements after itself). So for each i, we first pop up the elements that are no larger than nums[i] from buffer until we find one that is larger than nums[i] or the buffer is empty since those elements will be covered by nums[i] and can not be a maximum of any k-element window. Then we put nums[i] in the buffer. If i>=k-1, we need to ouput the maximum for window [i-k+1, i], which is the front element of buffer. At last, we will check if the front element is nums[i-k+1], if so, we have to pop it up since it will be out of the window [i-k+2, i+1] in the next iteration. Since all the elements will be pushed into/ popped out of the buffer only once, so the time complexity is O(N).

 

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        deque<int> buffer;
        vector<int> res;

        for(auto i=0; i<nums.size();++i)
        {
            while(!buffer.empty() && nums[i]>=nums[buffer.back()]) buffer.pop_back();
            buffer.push_back(i);

            if(i>=k-1) res.push_back(nums[buffer.front()]);
            if(buffer.front()== i-k + 1) buffer.pop_front();
        }
        return res;
    }
};

 

 

 

 

 

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值