题目链接:https://leetcode.com/problems/range-sum-query-2d-immutable/#/description
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [ [3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5] ] sumRegion(2, 1, 4, 3) -> 8 sumRegion(1, 1, 2, 2) -> 11 sumRegion(1, 2, 2, 4) -> 12
Construct a 2D array sums[row+1][col+1]
(notice: we add additional blank row sums[0][col+1]={0}
and
blank column sums[row+1][0]={0}
to remove the edge case checking), so, we can have the
following definition
sums[i+1][j+1]
represents the sum of area from matrix[0][0]
to matrix[i][j]
To calculate sums, the ideas as below
+-----+-+-------+ +--------+-----+ +-----+---------+ +-----+--------+
| | | | | | | | | | | | |
| | | | | | | | | | | | |
+-----+-+ | +--------+ | | | | +-----+ |
| | | | = | | + | | | - | |
+-----+-+ | | | +-----+ | | |
| | | | | | | |
| | | | | | | |
+---------------+ +--------------+ +---------------+ +--------------+
sums[i][j] = sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] +
matrix[i-1][j-1]
So, we use the same idea to find the specific area's sum.
+---------------+ +--------------+ +---------------+ +--------------+ +--------------+
| | | | | | | | | | | | | |
| (r1,c1) | | | | | | | | | | | | |
| +------+ | | | | | | | +---------+ | +---+ |
| | | | = | | | - | | | - | (r1,c2) | + | (r1,c1) |
| | | | | | | | | | | | | |
| +------+ | +---------+ | +---+ | | | | |
| (r2,c2)| | (r2,c2)| | (r2,c1) | | | | |
+---------------+ +--------------+ +---------------+ +--------------+ +--------------+
class NumMatrix {
private:
int row, col;
vector<vector<int>> sums;
public:
NumMatrix(vector<vector<int>> &matrix) {
row = matrix.size();
col = row>0 ? matrix[0].size() : 0;
sums = vector<vector<int>>(row+1, vector<int>(col+1, 0));
for(int i=1; i<=row; i++) {
for(int j=1; j<=col; j++) {
sums[i][j] = matrix[i-1][j-1] +
sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] ;
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
return sums[row2+1][col2+1] - sums[row2+1][col1] - sums[row1][col2+1] + sums[row1][col1];
}
};