
maschine learning
xiaocainiao_nixi
这个作者很懒,什么都没留下…
展开
-
Knn 手写识别
开始自己的学习之旅转载 2017-06-17 05:06:17 · 239 阅读 · 0 评论 -
kernel (I) basic learning
1.f means Features , and this is also for hypothesis.2.kernel function is similarity function.f>0,the same clusterf3.x1,x2,two Features4.原创 2017-06-26 06:46:33 · 222 阅读 · 0 评论 -
kernel(II)
1.l1,l2 means training examples2.3.we want to get lemma4.原创 2017-06-26 07:25:05 · 188 阅读 · 0 评论 -
prediction maschine learning
import pandas as pd --pandas: read data setfrom sklearn import linear_model -- (scikit learn maschine learning databse )import matplotlib.pyplot as plt --visualisieren model转载 2017-08-29 03:43:30 · 314 阅读 · 0 评论 -
first neuron network
from numpy import exp, array, random, dotclass NeuralNetwork(): # generate the weights def __init__(self): # Seed the random number generator, so it generates the same numb转载 2017-08-31 00:21:27 · 258 阅读 · 0 评论 -
Maschine learning #4
import numpy as np#step 1 Collect Datax = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]])print(x) #x value and y valuey = n转载 2017-09-10 00:24:12 · 313 阅读 · 0 评论 -
data preprosessing
import pandas as pd#read the valuesnewdata = pd.read_csv('annotations_final.csv',sep="\t")# show the headnewdata.head(5)#show infonewdata.info()newdata.columns#concate转载 2017-09-10 04:47:47 · 280 阅读 · 0 评论 -
pca learning #5
1.import numpy as npx = np.array([[-1,-1,-1],[-2,-1,-1.5],[-3,-2,-2]])x#normalize the datax_scaled = np.array(list(map(lambda y:(y-np.mean(y))/np.std(y),x.T))).Tx_scaled#Get th转载 2017-09-11 05:22:39 · 260 阅读 · 0 评论