C语言—题目—函数

 

1.写一个函数判断素数,并打印100-200间的素数

int is_prime(int n)
{
	int j = 0;
	for (j = 2;j <= n-1;j++)
	{
		if (n % j == 0)
		{
			return 0;
		}
		return 1;
	}
}

int main()
{
	int i = 0;
	for (i = 0;i <= 200;i++)
	{
		if (is_prime(i))
			printf("%d", i);
	}
	return 0;
}

优化1:
m = a * b
比如 16 = 2 * 8
= 4 * 4
a和b中一定有一个数字是 <= sprt(m)的
所以把 j <= n - 1 改为 j <= sqrt(n)即可 。用sprt函数记得引头文件math.h

优化2:
偶数不可能是素数
改为for(i = 101;i <= 200;i+=2)即可

2.写一个函数,实现一个整型有序数组的二分查找。

问题描述:找到了返回下标,未找到返回-1 

int binary_search(int arr[], int k, int sz)
{
	int left = 0;
	int right = sz - 1;

	while (left <= right)
	{
		int mid = left + (right - left) / 2;
		if (arr[mid] < k)
		{
			left = mid + 1;
		}
		else if (arr[mid] > k)
		{
			right = mid - 1;
		}
		else
		{
			return mid;
		}
	}
	return -1;//不返回0,因为数组的下标是从0开始的
}

int main()
{
	int arr[] = { 1,2,3,4,5,6,7,8,9,10 };
	int k = 7;
	int sz = sizeof(arr) / sizeof(arr[0]);
	int ret = binary_search(arr, k, sz);
	if (ret == -1)
	{
		printf("找不到");
	}
	else
	{
		printf("找到啦!下标是%d\n", ret);
	}

	return 0;
}

 注意:sz不能放在函数内部求(不然sz的值求出来会是1),因为数组在传参的时候,只会传数组首元素地址给形参。

3. 编写函数不创建临时变量,求字符串长度。

int my_strlen(char* str)
{
	if (*str != '\0')
		return 1 + my_strlen(str+1);
	else
		return 0;
}

int main()
{
	char arr[] = "abc";
	int len=my_strlen(arr);
	printf("%d", len);
	return 0;
}

4.汉诺塔问题

void move(char pos1, char pos2)
{
	printf("%c->%c ", pos1, pos2);
}

void Hanoi(int n, char pos1, char pos2, char pos3)
{
	if (n == 1)
	{
		move(pos1, pos3);
	}
	else
	{
		Hanoi(n - 1, pos1, pos3, pos2);
		move(pos1, pos3);
		Hanoi(n - 1, pos2, pos1, pos3);
	}
}

int main()
{
	Hanoi(3, 'A', 'B', 'C');
	return 0;
}

5.求第n个斐波那契数

(递归法)对于此题代码效率低,计算严重重复。

int Fib(int n)
{
	if (n < 2)
		return 1;
	else
		return Fib(n - 1) + Fib(n - 2);
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = Fib(n);
	printf("%d\n", ret);
	return 0;
}

(迭代法)

int Fib(int n)
{
	int a = 1;
	int b = 1;
	int c = 1;
	while (n >= 3)
	{
		c = a + b;
		a = b;
		b = c;
		n--;
	}

	return c;
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = Fib(n);
	printf("%d\n", ret);
	return 0;
}

6.小乐乐走台阶 

问题描述: 

小乐乐上课需要走n阶台阶,因为他腿比较长,所以每次可以选择走一阶或者走两阶,那么他一共有多少种走法?输入包含一个整数n (1 ≤ n ≤ 30),输出一个整数,即小乐乐可以走的方法数。

int fib(int n)
{
	if (n <= 2)
	{
		return n;
	}
	else
		return fib(n - 1) + fib(n - 2);
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int m = fib(n);
	printf("%d\n", m);

	return 0;
}

fib(n)为走n个台阶的走法有多少种。假设n=10,若第一步可以走1个台阶或者两个台阶,如果走一个台阶剩下9个台阶的走法数共有 fib(9)种,如果第一步走两个台阶,剩下8个台阶的走法,数有 fib(8)种。因此我们知道 n=1时,fib(1)=1,n=2时,fib(2)=2。n>2时,fib(n)=fib(n-1)+fib(n-2)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值