Swordsman(输入优化模板)

本文深入探讨了一位拥有多种魔法属性的剑客如何通过优化策略,在面对不同防御属性的怪物时实现最大化的战斗效果。通过将魔法属性按大小排序,并依次尝试击溃怪物,剑客不仅最大化了自己的魔法属性,还成功地计算出了最多可以击溃的怪物数量。文章详细阐述了解决过程,包括强大的输入优化技巧,使读者能够理解并应用到类似问题中。

Swordsman

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1096    Accepted Submission(s): 309


 

Problem Description

Lawson is a magic swordsman with k kinds of magic attributes v1,v2,v3,…,vk. Now Lawson is faced with n monsters and the i-th monster also has k kinds of defensive attributes ai,1,ai,2,ai,3,…,ai,k. If v1≥ai,1 and v2≥ai,2 and v3≥ai,3 and … and vkai,k, Lawson can kill the i-th monster (each monster can be killed for at most one time) and get EXP from the battle, which means vj will increase bi,j for j=1,2,3,…,k.
Now we want to know how many monsters Lawson can kill at most and how much Lawson's magic attributes can be maximized.

 

 

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line has two integers n and k (1≤n≤105,1≤k≤5).
The second line has k non-negative integers (initial magic attributes) v1,v2,v3,…,vk.
For the next n lines, the i-th line contains 2k non-negative integers ai,1,ai,2,ai,3,…,ai,k,bi,1,bi,2,bi,3,…,bi,k.
It's guaranteed that all input integers are no more than 109 and vj+∑i=1nbi,j≤109 for j=1,2,3,…,k.

It is guaranteed that the sum of all n ≤5×105.
The input data is very large so fast IO (like `fread`) is recommended.

 

 

Output

For each test case:
The first line has one integer which means the maximum number of monsters that can be killed by Lawson.
The second line has k integers v′1,v′2,v′3,…,vk and the i-th integer means maximum of the i-th magic attibute.

 

 

Sample Input

 

1 4 3 7 1 1 5 5 2 6 3 1 24 1 1 1 2 1 0 4 1 5 1 1 6 0 1 5 3 1

 

 

Sample Output

 

3 23 8 4

Hint

For the sample, initial V = [7, 1, 1] ① kill monster #4 (6, 0, 1), V + [5, 3, 1] = [12, 4, 2] ② kill monster #3 (0, 4, 1), V + [5, 1, 1] = [17, 5, 3] ③ kill monster #1 (5, 5, 2), V + [6, 3, 1] = [23, 8, 4] After three battles, Lawson are still not able to kill monster #2 (24, 1, 1) because 23 < 24.

 

 

Source

2018 Multi-University Training Contest 7

 

 

Recommend

chendu   |   We have carefully selected several similar problems for you:  6396 6395 6394 6393 6392 

思路:思路很简单,就是各个属性值按照由小到大依次排序,按照属性值能吃就吃,当每一次循环没有全部被吃完的情况就跳出while。但是这道题要用到强大的输入优化。(贴一份强大的dls代码+读入优化模板)

当然这道题也让让我见识了强有力的转化,每一个数组都有独特的意义,想明白了就不绕了。

代码:

#include<bits/stdc++.h>
using namespace std;
namespace IO{
        #define BUF_SIZE 100000
        #define OUT_SIZE 100000
        #define ll long long
        //fread->read

        bool IOerror=0;
        inline char nc(){
            static char buf[BUF_SIZE],*p1=buf+BUF_SIZE,*pend=buf+BUF_SIZE;
            if (p1==pend){
                p1=buf; pend=buf+fread(buf,1,BUF_SIZE,stdin);
                if (pend==p1){IOerror=1;return -1;}
                //{printf("IO error!\n");system("pause");for (;;);exit(0);}
            }
            return *p1++;
        }
        inline bool blank(char ch){return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';}
        inline void read(int &x){
            bool sign=0; char ch=nc(); x=0;
            for (;blank(ch);ch=nc());
            if (IOerror)return;
            if (ch=='-')sign=1,ch=nc();
            for (;ch>='0'&&ch<='9';ch=nc())x=x*10+ch-'0';
            if (sign)x=-x;
        }
        inline void read(ll &x){
            bool sign=0; char ch=nc(); x=0;
            for (;blank(ch);ch=nc());
            if (IOerror)return;
            if (ch=='-')sign=1,ch=nc();
            for (;ch>='0'&&ch<='9';ch=nc())x=x*10+ch-'0';
            if (sign)x=-x;
        }
        inline void read(double &x){
            bool sign=0; char ch=nc(); x=0;
            for (;blank(ch);ch=nc());
            if (IOerror)return;
            if (ch=='-')sign=1,ch=nc();
            for (;ch>='0'&&ch<='9';ch=nc())x=x*10+ch-'0';
            if (ch=='.'){
                double tmp=1; ch=nc();
                for (;ch>='0'&&ch<='9';ch=nc())tmp/=10.0,x+=tmp*(ch-'0');
            }
            if (sign)x=-x;
        }
        inline void read(char *s){
            char ch=nc();
            for (;blank(ch);ch=nc());
            if (IOerror)return;
            for (;!blank(ch)&&!IOerror;ch=nc())*s++=ch;
            *s=0;
        }
        inline void read(char &c){
            for (c=nc();blank(c);c=nc());
            if (IOerror){c=-1;return;}
        }
        //fwrite->write
        struct Ostream_fwrite{
            char *buf,*p1,*pend;
            Ostream_fwrite(){buf=new char[BUF_SIZE];p1=buf;pend=buf+BUF_SIZE;}
            void out(char ch){
                if (p1==pend){
                    fwrite(buf,1,BUF_SIZE,stdout);p1=buf;
                }
                *p1++=ch;
            }
            void print(int x){
                static char s[15],*s1;s1=s;
                if (!x)*s1++='0';if (x<0)out('-'),x=-x;
                while(x)*s1++=x%10+'0',x/=10;
                while(s1--!=s)out(*s1);
            }
            void println(int x){
                static char s[15],*s1;s1=s;
                if (!x)*s1++='0';if (x<0)out('-'),x=-x;
                while(x)*s1++=x%10+'0',x/=10;
                while(s1--!=s)out(*s1); out('\n');
            }
            void print(ll x){
                static char s[25],*s1;s1=s;
                if (!x)*s1++='0';if (x<0)out('-'),x=-x;
                while(x)*s1++=x%10+'0',x/=10;
                while(s1--!=s)out(*s1);
            }
            void println(ll x){
                static char s[25],*s1;s1=s;
                if (!x)*s1++='0';if (x<0)out('-'),x=-x;
                while(x)*s1++=x%10+'0',x/=10;
                while(s1--!=s)out(*s1); out('\n');
            }
            void print(double x,int y){
                static ll mul[]={1,10,100,1000,10000,100000,1000000,10000000,100000000,
                    1000000000,10000000000LL,100000000000LL,1000000000000LL,10000000000000LL,
                    100000000000000LL,1000000000000000LL,10000000000000000LL,100000000000000000LL};
                if (x<-1e-12)out('-'),x=-x;x*=mul[y];
                ll x1=(ll)floor(x); if (x-floor(x)>=0.5)++x1;
                ll x2=x1/mul[y],x3=x1-x2*mul[y]; print(x2);
                if (y>0){out('.'); for (size_t i=1;i<y&&x3*mul[i]<mul[y];out('0'),++i); print(x3);}
            }
            void println(double x,int y){print(x,y);out('\n');}
            void print(char *s){while (*s)out(*s++);}
            void println(char *s){while (*s)out(*s++);out('\n');}
            void flush(){if (p1!=buf){fwrite(buf,1,p1-buf,stdout);p1=buf;}}
            ~Ostream_fwrite(){flush();}
        }Ostream;
        inline void print(int x){Ostream.print(x);}
        inline void println(int x){Ostream.println(x);}
        inline void print(char x){Ostream.out(x);}
        inline void println(char x){Ostream.out(x);Ostream.out('\n');}
        inline void print(ll x){Ostream.print(x);}
        inline void println(ll x){Ostream.println(x);}
        inline void print(double x,int y){Ostream.print(x,y);}
        inline void println(double x,int y){Ostream.println(x,y);}
        inline void print(char *s){Ostream.print(s);}
        inline void println(char *s){Ostream.println(s);}
        inline void println(){Ostream.out('\n');}
        inline void flush(){Ostream.flush();}
        #undef ll
        #undef OUT_SIZE
        #undef BUF_SIZE
};
const int N=100005,K=6;
int n,k,id[K][N],a[N][K],b[N][K],Num[N],pos[K],val[K],Ans,Ind;
int cmp(int x,int y)
{
    return a[x][Ind]<a[y][Ind];///ind是属性。同一个属性这样子排序
}
void solve()
{
        IO::read(n);
        IO::read(k);
        for(int i=1;i<=n;i++)
            Num[i]=0;
        for(int i=1;i<=k;i++)
            IO::read(val[i]),pos[i]=1;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=k;j++)
                IO::read(a[i][j]);
            for(int j=1;j<=k;j++)
                IO::read(b[i][j]);
        }
        
        for(Ind=1;Ind<=k;Ind++)
        {
            for(int i=1;i<=n;i++)
                id[Ind][i]=i;///id 【ind】 【i】表示第ind的这一
                
            sort(id[Ind]+1,id[Ind]+n+1,cmp);
        }
        Ans=0;
        while(1)
        {
            int last=Ans;
            for(int i=1;i<=k;i++)///按照属性
            {
                while(pos[i]<=n&&a[id[i][pos[i]]][i]<=val[i])///说明这个点是可以的
                {
                    int t=id[i][pos[i]];///t代表的是i这个属性序号为pos[i]的序号值
                    Num[t]++;///
                    if(Num[t]==k)
                    {
                        Ans++;
                        for(int j=1;j<=k;j++)
                            val[j]+=b[t][j];
                    }
                    pos[i]++;    ///说明i这个属性目前到了第几个序号
                }
            }
            if(Ans==last)///当这种循环不行的时候就停止。
                break;
        }
        IO::println(Ans);
        for(int i=1;i<=k;i++)
            IO::print(val[i]),IO::print(i!=k?' ':'\n');
}
int main()
{
    int t;
    cin>>t;
    while(t--)
        solve();
    return 0;
}

 

【电动车】基于多目标优化遗传算法NSGAII的峰谷分时电价引导下的电动汽车充电负荷优化研究(Matlab代码实现)内容概要:本文围绕“基于多目标优化遗传算法NSGA-II的峰谷分时电价引导下的电动汽车充电负荷优化研究”展开,利用Matlab代码实现优化模型,旨在通过峰谷分时电价机制引导电动汽车有序充电,降低电网负荷波动,提升能源利用效率。研究融合了多目标优化思想与遗传算法NSGA-II,兼顾电网负荷均衡性、用户充电成本和充电满意度等多个目标,构建了科学合理的数学模型,并通过仿真验证了方法的有效性与实用性。文中还提供了完整的Matlab代码实现路径,便于复现与进一步研究。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事智能电网、电动汽车调度相关工作的工程技术人员。; 使用场景及目标:①应用于智能电网中电动汽车充电负荷的优化调度;②服务于峰谷电价政策下的需求侧管理研究;③为多目标优化算法在能源系统中的实际应用提供案例参考; 阅读建议:建议读者结合Matlab代码逐步理解模型构建与算法实现过程,重点关注NSGA-II算法在多目标优化中的适应度函数设计、约束处理及Pareto前沿生成机制,同时可尝试调整参数或引入其他智能算法进行对比分析,以深化对优化策略的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值