树
二叉树、多路查找树、堆、树状数组、线段树
23 | 二叉树基础(上):什么样的二叉树适合用数组来存储?
树 - 二叉树 - 满二叉树 - 完全二叉树
完全二叉树
二叉树的存储
想要存储一棵二叉树,我们有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。
小结
非线性表数据结构,树。关于树,有几个比较常用的概念你需要掌握,那就是:根节点、叶子节点、父节点、子节点、兄弟节点,还有节点的高度、深度、层数,以及树的高度。
举例:
我们平时最常用的树就是二叉树。二叉树的每个节点最多有两个子节,分别是左子节点和右子节点。二叉树中,有两种比较特殊的树,分别是满二叉树和完全二叉树。满二叉树又是完全二叉树的一种特殊情况。
二叉树既可以用链式存储,也可以用数组顺序存储。**数组顺序存储的方式比较适合完全二叉树,其他类型的二叉树用数组存储会比较浪费存储空间。**除此之外,二叉树里非常重要的操作就是前、中、后序遍历操作,遍历的时间复杂度是 O(n),你需要理解并能用递归代码来实现。
思考
1.给定一组数据,比如 1,3,5,6,9,10。你来算算,可以构建出多少种不同的二叉树?
2.我们讲了三种二叉树的遍历方式,前、中、后序。实际上,还有另外一种遍历方式,也就是按层遍历,你知道如何实现吗?
24 | 二叉树基础(下):有了如此高效的散列表,为什么还需要二叉树?
解答开篇
我们在散列表那节中讲过,散列表的插入、删除、查找操作的时间复杂度可以做到常量级的 O(1),非常高效。而二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是 O(logn),相对散列表,好像并没有什么优势,那我们为什么还要用二叉查找树呢?
我认为有下面几个原因:
第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在 O(n) 的时间复杂度内,输出有序的数据序列。
第二,散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在 O(logn)。
第三,笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比 logn 小,所以实际的查找速度可能不一定比 O(logn) 快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。
第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。
最后,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。
内容小结
今天我们学习了一种特殊的二叉树,二叉查找树。它支持快速地查找、插入、删除操作。
二叉查找树中,每个节点的值都大于左子树节点的值,小于右子树节点的值。不过,这只是针对没有重复数据的情况。对于存在重复数据的二叉查找树,我介绍了两种构建方法,一种是让每个节点存储多个值相同的数据;另一种是,每个节点中存储一个数据。针对这种情况,我们只需要稍加改造原来的插入、删除、查找操作即可。
在二叉查找树中,查找、插入、删除等很多操作的时间复杂度都跟树的高度成正比。两个极端情况的时间复杂度分别是 O(n) 和 O(logn),分别对应二叉树退化成链表的情况和完全二叉树。
为了避免时间复杂度的退化,针对二叉查找树,我们又设计了一种更加复杂的树,平衡二叉查找树,时间复杂度可以做到稳定的 O(logn),下一节我们下一节我们具体来讲。
课后思考
今天我讲了二叉树高度的理论分析方法,给出了粗略的数量级。如何通过编程,求出一棵给定二叉树的确切高度呢?
递归法,根节点高度=max(左子树高度,右子树高度)+1
知识关联
链表 -(两个指针)-> 二叉树 -(查找)-> 二叉查找树 -(稳定性)-> 平衡二叉查找树
链表 -(多个指针)-> 图
25 | 红黑树(上):为什么工程中都用红黑树这种二叉树?
什么是“平衡二叉查找树”?
平衡二叉树的严格定义是这样的:二叉树中任意一个节点的左右子树的高度相差不能大于 1。从这个定义来看,上一节我们讲的完全二叉树、满二叉树其实都是平衡二叉树,但是非完全二叉树也有可能是平衡二叉树。
平衡二叉查找树不仅满足上面平衡二叉树的定义,还满足二叉查找树的特点。最先被发明的平衡二叉查找树是AVL 树,它严格符合我刚讲到的平衡二叉查找树的定义,即任何节点的左右子树高度相差不超过 1,是一种高度平衡的二叉查找树。
但是很多平衡二叉查找树其实并没有严格符合上面的定义(树中任意一个节点的左右子树的高度相差不能大于 1),比如我们下面要讲的红黑树,它从根节点到各个叶子节点的最长路径,有可能会比最短路径大一倍。
发明平衡二叉查找树这类数据结构的初衷是,解决普通二叉查找树在频繁的插入、删除等动态更新的情况下,出现时间复杂度退化的问题。
平衡二叉查找树中“平衡”的意思,其实就是让整棵树左右看起来比较“对称”、比较“平衡”,不要出现左子树很高、右子树很矮的情况。这样就能让整棵树的高度相对来说低一些,相应的插入、删除、查找等操作的效率高一些。
如何定义一棵“红黑树”?
平衡二叉查找树其实有很多,比如,Splay Tree(伸展树)、Treap(树堆)等,但是我们提到平衡二叉查找树,听到的基本都是红黑树。它的出镜率甚至要高于“平衡二叉查找树”这几个字,有时候,我们甚至默认平衡二叉查找树就是红黑树,那我们现在就来看看这个“明星树”。
红黑树的英文是“Red-Black Tree”,简称 R-B Tree。它是一种不严格的平衡二叉查找树,我前面说了,它的定义是不严格符合平衡二叉查找树的定义的。那红黑树究竟是怎么定义的呢?
顾名思义,红黑树中的节点,一类被标记为黑色,一类被标记为红色。除此之外,一棵红黑树还需要满足这样几个要求:
- 根节点是黑色的;
- 每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据;(简化红黑树的代码实现)
- 任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;
- 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;
为了让你更好地理解上面的定义,我画了两个红黑树的图例,你可以对照着看下。
为什么说红黑树是“近似平衡”的?
我们前面也讲到,平衡二叉查找树的初衷,是为了解决二叉查找树因为动态更新导致的性能退化问题。所以,“平衡”的意思可以等价为性能不退化。“近似平衡”就等价为性能不会退化的太严重。
首先,我们来看,如果我们将红色节点从红黑树中去掉,那单纯包含黑色节点的红黑树的高度是多少呢?
红色节点删除之后,有些节点就没有父节点了,它们会直接拿这些节点的祖父节点(父节点的父节点)作为父节点。所以,之前的二叉树就变成了四叉树。
前面红黑树的定义里有这么一条:从任意节点到可达的叶子节点的每个路径包含相同数目的黑色节点。我们从四叉树中取出某些节点,放到叶节点位置,四叉树就变成了完全二叉树。所以,仅包含黑色节点的四叉树的高度,比包含相同节点个数的完全二叉树的高度还要小。
完全二叉树的高度近似 log2n,这里的四叉“黑树”的高度要低于完全二叉树,所以去掉红色节点的“黑树”的高度也不会超过 log2n。
我们现在知道只包含黑色节点的“黑树”的高度,那我们现在把红色节点加回去,高度会变成多少呢?
从上面我画的红黑树的例子和定义看,在红黑树中,红色节点不能相邻,也就是说,有一个红色节点就要至少有一个黑色节点,将它跟其他红色节点隔开。红黑树中包含最多黑色节点的路径不会超过 log2n,所以加入红色节点之后,最长路径不会超过 2log2n,也就是说,红黑树的高度近似 2log2n。
所以,红黑树的高度只比高度平衡的 AVL 树的高度(log2n)仅仅大了一倍,在性能上,下降得并不多。这样推导出来的结果不够精确,实际上红黑树的性能更好。
开篇解答
我们前面提到 Treap、Splay Tree,绝大部分情况下,它们操作的效率都很高,但是也无法避免极端情况下时间复杂度的退化。尽管这种情况出现的概率不大,但是对于单次操作时间非常敏感的场景来说,它们并不适用。
AVL 树是一种高度平衡的二叉树,所以查找的效率非常高,但是,有利就有弊,AVL 树为了维持这种高度的平衡,就要付出更多的代价。每次插入、删除都要做调整,就比较复杂、耗时。所以,对于有频繁的插入、删除操作的数据集合,使用 AVL 树的代价就有点高了。
红黑树只是做到了近似平衡,并不是严格的平衡,所以在维护平衡的成本上,要比 AVL 树要低。
所以,红黑树的插入、删除、查找各种操作性能都比较稳定。对于工程应用来说,要面对各种异常情况,为了支撑这种工业级的应用,我们更倾向于这种性能稳定的平衡二叉查找树。
内容小结
我们学习数据结构和算法,要学习它的由来、特性、适用的场景以及它能解决的问题。对于红黑树,也不例外。你如果能搞懂这几个问题,其实就已经足够了。
红黑树是一种平衡二叉查找树。它是为了解决普通二叉查找树在数据更新的过程中,复杂度退化的问题而产生的。红黑树的高度近似 log2n,所以它是近似平衡,插入、删除、查找操作的时间复杂度都是 O(logn)。
因为红黑树是一种性能非常稳定的二叉查找树,所以,在工程中,但凡是用到动态插入、删除、查找数据的场景,都可以用到它。不过,它实现起来比较复杂,如果自己写代码实现,难度会有些高,这个时候,我们其实更倾向用跳表来替代它。
课后思考
动态数据结构支持动态地数据插入、删除、查找操作,除了红黑树,我们前面还学习过哪些呢?能对比一下各自的优势、劣势,以及应用场景吗?
26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树
实现红黑树的基本思想
实际上,红黑树的平衡过程跟魔方复原非常神似,大致过程就是:遇到什么样的节点排布,我们就对应怎么去调整。
左旋(rotate left)& 右旋(rotate right)
插入操作的平衡调整
红黑树规定,插入的节点必须是红色的。而且,二叉查找树中新插入的节点都是放在叶子节点上。所以,关于插入操作的平衡调整,有这样两种特殊情况,但是也都非常好处理。
- 如果插入节点的父节点是黑色的,那我们什么都不用做,它仍然满足红黑树的定义。
- 如果插入的节点是根节点,那我们直接改变它的颜色,把它变成黑色就可以了。
除此之外,其他情况都会违背红黑树的定义,于是我们就需要进行调整,调整的过程包含两种基础的操作:左右旋转和改变颜色。
红黑树的平衡调整过程是一个迭代的过程。我们把正在处理的节点叫作关注节点。关注节点会随着不停地迭代处理,而不断发生变化。最开始的关注节点就是新插入的节点。
新节点插入之后,如果红黑树的平衡被打破,那一般会有下面三种情况。我们只需要根据每种情况的特点,不停地调整,就可以让红黑树继续符合定义,也就是继续保持平衡。
CASE 1:如果关注节点是 a,它的叔叔节点 d 是红色
CASE 2:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的右子节点
CASE 3:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的左子节点
删除操作的平衡调整
删除操作的平衡调整分为两步,第一步是针对删除节点初步调整。初步调整只是保证整棵红黑树在一个节点删除之后,仍然满足最后一条定义的要求,也就是说,每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;第二步是针对关注节点进行二次调整,让它满足红黑树的第三条定义,即不存在相邻的两个红色节点。
1、针对删除节点初步调整
CASE 1:如果要删除的节点是 a,它只有一个子节点 b
CASE 2:如果要删除的节点 a 有两个非空子节点,并且它的后继节点就是节点 a 的右子节点 c
CASE 3:如果要删除的是节点 a,它有两个非空子节点,并且节点 a 的后继节点不是右子节点
2、针对关注节点进行二次调整
CASE 1:如果关注节点是 a,它的兄弟节点 c 是红色的
CASE 2:如果关注节点是 a,它的兄弟节点 c 是黑色的,并且节点 c 的左右子节点 d、e 都是黑色的
CASE 3:如果关注节点是 a,它的兄弟节点 c 是黑色,c 的左子节点 d 是红色,c 的右子节点 e 是黑色
CASE 4:如果关注节点 a 的兄弟节点 c 是黑色的,并且 c 的右子节点是红色的
内容小结
现在,我就来总结一下,如何比较轻松地看懂我今天讲的操作过程。
- 把红黑树的平衡调整的过程比作魔方复原,不要过于深究这个算法的正确性
- 找准关注节点,不要搞丢、搞错关注节点
- 插入操作的平衡调整比较简单,但是删除操作就比较复杂
48 | B+树:MySQL数据库索引是如何实现的?
问题:数据库索引是如何实现的呢?底层使用的是什么数据结构和算法呢?
1.解决问题的前提是定义清楚问题
如果你对数据库的操作非常了解,针对我们现在这个问题,你就能把索引的需求定义得非常清楚。但是,对于大部分软件工程师来说,我们可能只了解一小部分常用的 SQL 语句,所以,这里我们假设要解决的问题,只包含这样两个常用的需求:
- 根据某个值查找数据,比如 select * from user where id=1234;
- 根据区间值来查找某些数据,比如 select * from user where id > 1234 and id < 2345。
对一些模糊的需求进行假设,来限定要解决的问题的范围
性能方面的需求。性能方面的需求,我们主要考察时间和空间两方面,也就是执行效率和存储空间
2.尝试用学过的数据结构解决这个问题
问题的需求大致定义清楚了,我们现在回想一下,能否利用已经学习过的数据结构解决这个问题呢?支持快速查询、插入等操作的动态数据结构,我们已经学习过散列表、平衡二叉查找树、跳表。
我们先来看散列表。散列表的查询性能很好,时间复杂度是 O(1)。但是,散列表不能支持按照区间快速查找数据。所以,散列表不能满足我们的需求。
我们再来看平衡二叉查找树。尽管平衡二叉查找树查询的性能也很高,时间复杂度是 O(logn)。而且,对树进行中序遍历,我们还可以得到一个从小到大有序的数据序列,但这仍然不足以支持按照区间快速查找数据。
我们再来看跳表。跳表是在链表之上加上多层索引构成的。它支持快速地插入、查找、删除数据,对应的时间复杂度是 O(logn)。并且,跳表也支持按照区间快速地查找数据。我们只需要定位到区间起点值对应在链表中的结点,然后从这个结点开始,顺序遍历链表,直到区间终点对应的结点为止,这期间遍历得到的数据就是满足区间值的数据。
这样看来,跳表是可以解决这个问题。实际上,数据库索引所用到的数据结构跟跳表非常相似,叫作 B+ 树。不过,它是通过二叉查找树演化过来的,而非跳表。为了给你还原发明 B+ 树的整个思考过程,所以,接下来,我还再从二叉查找树讲起,看它是如何一步一步被改造成 B+ 树的。
3.改造二叉查找树来解决这个问题
为了让二叉查找树支持按照区间来查找数据,我们可以对它进行这样的改造:树中的节点并不存储数据本身,而是只是作为索引。除此之外,我们把每个叶子节点串在一条链表上,链表中的数据是从小到大有序的。经过改造之后的二叉树,就像图中这样,看起来是不是很像跳表呢?
改造之后,如果我们要求某个区间的数据。
但是,我们要为几千万、上亿的数据构建索引,如果将索引存储在内存中,尽管内存访问的速度非常快,查询的效率非常高,但是,占用的内存会非常多。
比如,我们给一亿个数据构建二叉查找树索引,那索引中会包含大约 1 亿个节点,每个节点假设占用 16 个字节,那就需要大约 1GB 的内存空间。给一张表建立索引,我们需要 1GB 的内存空间。如果我们要给 10 张表建立索引,那对内存的需求是无法满足的。如何解决这个索引占用太多内存的问题呢?
我们可以借助时间换空间的思路,把索引存储在硬盘中,而非内存中。我们都知道,硬盘是一个非常慢速的存储设备。通常内存的访问速度是纳秒级别的,而磁盘访问的速度是毫秒级别的。读取同样大小的数据,从磁盘中读取花费的时间,是从内存中读取所花费时间的上万倍,甚至几十万倍。
二叉查找树,经过改造之后,支持区间查找的功能就实现了。不过,为了节省内存,如果把树存储在硬盘中,那么每个节点的读取(或者访问),都对应一次磁盘 IO 操作。树的高度就等于每次查询数据时磁盘 IO 操作的次数。
我们前面讲到,比起内存读写操作,磁盘 IO 操作非常耗时,所以我们优化的重点就是尽量减少磁盘 IO 操作,也就是,尽量降低树的高度。那如何降低树的高度呢?
我们来看下,如果我们把索引构建成 m 叉树,高度是不是比二叉树要小呢?如图所示,给 16 个数据构建二叉树索引,树的高度是 4,查找一个数据,就需要 4 个磁盘 IO 操作(如果根节点存储在内存中,其他结点存储在磁盘中),如果对 16 个数据构建五叉树索引,那高度只有 2,查找一个数据,对应只需要 2 次磁盘操作。如果 m 叉树中的 m 是 100,那对一亿个数据构建索引,树的高度也只是 3,最多只要 3 次磁盘 IO 就能获取到数据。磁盘 IO 变少了,查找数据的效率也就提高了。
对于相同个数的数据构建 m 叉树索引,m 叉树中的 m 越大,那树的高度就越小,那 m 叉树中的 m 是不是越大越好呢?到底多大才最合适呢?
不管是内存中的数据,还是磁盘中的数据,操作系统都是按页(一页大小通常是 4KB,这个值可以通过 getconfig PAGE_SIZE 命令查看)来读取的,一次会读一页的数据。如果要读取的数据量超过一页的大小,就会触发多次 IO 操作。所以,我们在选择 m 大小的时候,要尽量让每个节点的大小等于一个页的大小。读取一个节点,只需要一次磁盘 IO 操作。
尽管索引可以提高数据库的查询效率,但是,作为一名开发工程师,你应该也知道,索引有利也有弊,它也会让写入数据的效率下降。这是为什么呢?
数据的写入过程,会涉及索引的更新,这是索引导致写入变慢的主要原因。
对于一个 B+ 树来说,m 值是根据页的大小事先计算好的,也就是说,每个节点最多只能有 m 个子节点。在往数据库中写入数据的过程中,这样就有可能使索引中某些节点的子节点个数超过 m,这个节点的大小超过了一个页的大小,读取这样一个节点,就会导致多次磁盘 IO 操作。我们该如何解决这个问题呢?
实际上,处理思路并不复杂。我们只需要将这个节点分裂成两个节点。但是,节点分裂之后,其上层父节点的子节点个数就有可能超过 m 个。不过这也没关系,我们可以用同样的方法,将父节点也分裂成两个节点。这种级联反应会从下往上,一直影响到根节点。这个分裂过程,你可以结合着下面这个图一块看,会更容易理解(图中的 B+ 树是一个三叉树。我们限定叶子节点中,数据的个数超过 2 个就分裂节点;非叶子节点中,子节点的个数超过 3 个就分裂节点)。
正是因为要时刻保证 B+ 树索引是一个 m 叉树,所以,索引的存在会导致数据库写入的速度降低。实际上,不光写入数据会变慢,删除数据也会变慢。这是为什么呢?
我们在删除某个数据的时候,也要对应的更新索引节点。这个处理思路有点类似跳表中删除数据的处理思路。频繁的数据删除,就会导致某些结点中,子节点的个数变得非常少,长此以往,如果每个节点的子节点都比较少,势必会影响索引的效率。
我们可以设置一个阈值。在 B+ 树中,这个阈值等于 m/2。如果某个节点的子节点个数小于 m/2,我们就将它跟相邻的兄弟节点合并。不过,合并之后结点的子节点个数有可能会超过 m。针对这种情况,我们可以借助插入数据时候的处理方法,再分裂节点。
文字描述不是很直观,我举了一个删除操作的例子,你可以对比着看下(图中的 B+ 树是一个五叉树。我们限定叶子节点中,数据的个数少于 2 个就合并节点;非叶子节点中,子节点的个数少于 3 个就合并节点。)。
总结一下 B+ 树的特点
- 每个节点中子节点的个数不能超过 m,也不能小于 m/2;
- 根节点的子节点个数可以不超过 m/2,这是一个例外;
- m 叉树只存储索引,并不真正存储数据,这个有点儿类似跳表;
- 通过链表将叶子节点串联在一起,这样可以方便按区间查找;
- 一般情况,根节点会被存储在内存中,其他节点存储在磁盘中。
B 树 & B + 树
除了 B+ 树,你可能还听说过 B 树、B- 树,我这里简单提一下。实际上,B- 树就是 B 树,英文翻译都是 B-Tree,这里的“-”并不是相对 B+ 树中的“+”,而只是一个连接符。这个很容易误解,所以我强调下。
而 B 树实际上是低级版的 B+ 树,或者说 B+ 树是 B 树的改进版。B 树跟 B+ 树的不同点主要集中在这几个地方:
- B+ 树中的节点不存储数据,只是索引,而 B 树中的节点存储数据;
- B 树中的叶子节点并不需要链表来串联。
思考
1、B+ 树中,将叶子节点串起来的链表,是单链表还是双向链表?为什么?
双向链表
2、我们对平衡二叉查找树进行改造,将叶子节点串在链表中,就支持了按照区间来查找数据。散列表也经常跟链表一块使用,如果我们把散列表中的结点,也用链表串起来,能否支持按照区间查找数据呢?
散列表中的结点,用链表串联起来,支持按照区间查找数据的
50 | 索引:如何在海量数据中快速查找某个数据?
为什么需要索引?
- “存储”需要的就是数据结构
- “计算”需要的就是算法
- “效率”就是索引
索引的需求定义
1、功能性需求
- 数据是格式化数据还是非格式化数据?
- 数据是静态数据还是动态数据?
- 索引存储在内存还是硬盘?
- 单值查找还是区间查找?
- 单关键词查找还是多关键词组合查找?
2、非功能性需求
- 不管是存储在内存中还是磁盘中,索引对存储空间的消耗不能过大。
- 在考虑索引查询效率的同时,我们还要考虑索引的维护成本。
构建索引常用的数据结构有哪些?
- 散列表增删改查操作的性能非常好,时间复杂度是 O(1)。比如 Redis、Memcache,就是使用散列表来构建索引的。这类索引,一般都构建在内存中。
- 红黑树作为一种常用的平衡二叉查找树,数据插入、删除、查找的时间复杂度是 O(logn),也非常适合用来构建内存索引。Ext 文件系统中,对磁盘块的索引,用的就是红黑树。
- B+ 树比起红黑树来说,更加适合构建存储在磁盘中的索引。B+ 树是一个多叉树,所以,对相同个数的数据构建索引,B+ 树的高度要低于红黑树。当借助索引查询数据的时候,读取 B+ 树索引,需要的磁盘 IO 次数非常更少。所以,大部分关系型数据库的索引,比如 MySQL、Oracle,都是用 B+ 树来实现的。
- 跳表也支持快速添加、删除、查找数据。而且,我们通过灵活调整索引结点个数和数据个数之间的比例,可以很好地平衡索引对内存的消耗及其查询效率。Redis 中的有序集合,就是用跳表来构建的。
- 布隆过滤器有一定的判错率。但是,我们可以规避它的短处,发挥它的长处。尽管对于判定存在的数据,有可能并不存在,但是对于判定不存在的数据,那肯定就不存在。而且,布隆过滤器还有一个更大的特点,那就是内存占用非常少。我们可以针对数据,构建一个布隆过滤器,并且存储在内存中。当要查询数据的时候,我们可以先通过布隆过滤器,判定是否存在。如果通过布隆过滤器判定数据不存在,那我们就没有必要读取磁盘中的索引了。对于数据不存在的情况,数据查询就更加快速了。
- 有序数组也可以被作为索引。如果数据是静态的,也就是不会有插入、删除、更新操作,那我们可以把数据的关键词(查询用的)抽取出来,组织成有序数组,然后利用二分查找算法来快速查找数据。
思考
你知道基础系统、中间件、开源软件等系统中,有哪些用到了索引吗?这些系统的索引是如何实现的呢?