Opencv遍历像素有四种方式
第一种
利用opencv中
for (int i = 0; i < nrow; i++)
{
for (int j = 0; j < ncol; j++)
{
//qDebug() << "original pixel is" << source.at<uchar>(i, j);
source.at<uchar>(i, j) = uchar(fn(source.at<uchar>(i, j), low_in, high_in, low_out, high_out));
//qDebug() << "processed pixel is" << source.at<uchar>(i, j);
}
}
第二种
for (int i = 0; i < nrow; i++)
{
uchar* data = source.ptr<uchar>(i);
for (int j = 0; j < ncol; j++)
{
data[j] = uchar(fn(data[j], low_in, high_in, low_out, high_out));
}
}
第三种
if (source.isContinuous())
{
nc = nrow * ncol;
uchar* inData = source.ptr<uchar>(0);
for (int i = 0; i < nc; i++)
{
*inData = fn(*inData, low_in, high_in, low_out, high_out);
inData++;
}
}
图像IMadjust利用lambda表达式
auto fn = [](double x, double low_in, double high_in, double low_out, double high_out) {
if (x < low_in)
return low_out;
if (x > high_in)
return high_out;
return (high_out - high_in) / (low_out - low_in)*(x - low_in) + high_in;
};
整体测试结果对于4000*6000大小的图片,三种方法的用时分别为0.873s,0.203s,0.195s
本文介绍了使用Opencv进行像素遍历的三种高效方法,并对比了它们在处理4000*6000大小图像时的性能。通过直接访问、连续内存优化及lambda表达式,实现了快速图像处理。
1997

被折叠的 条评论
为什么被折叠?



