623. Add One Row to Tree

本文介绍了一种使用深度优先搜索(DFS)策略,在树的特定层插入新节点的算法实现。通过递归地遍历树的结构,可以在指定深度处高效地添加节点。

题目

在这里插入图片描述
给一颗树的第n层加入v值。

我的代码

思路比较简单,就是DFS。
分为三种情况,一种是下一层,那么直接添加。一种是要在第一层,是一个特殊情况,其他情况下往下逐层遍历即可。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def addOneRow(self, root: TreeNode, v: int, d: int) -> TreeNode:
        if root:
            if d==1:
                newNode= TreeNode(v)
                newNode.left=root
                return newNode
            elif d==2:
                newNode1=TreeNode(v)
                newNode1.left=root.left
                root.left=newNode1
                newNode2=TreeNode(v)
                newNode2.right=root.right
                root.right=newNode2
            else:
                self.addOneRow(root.left,v,d-1)
                self.addOneRow(root.right,v,d-1)
        return root

查询了结果,看到了效率高的答案也是用了相似的解法。

# #Variant you can use # user_param: 用户在弹窗输入的参数 #env: Odoo Environment on which the action is triggered #time, datetime, dateutil, pytz: useful Python libraries #logger: #UserError: Warning Exception to use with raise #'obj': record, #'wb': return of openpyxl.load_workbook(), #'ws': openpyxl.worksheet.worksheet.Worksheet, #'style': openpyxl.styles, #'add_img': add_img, #'copy': copy, # #Example: #ws['G9'] = obj.confirmation_date #ws["B1"].font=style.Font(name="宋体",size=17,color="00CCFF") #ws.cell(2,1).fill = style.PatternFill("solid",fgColor="00FF02") #ws.cell(row,col).alignment = style.Alignment(horizontal='center', vertical='justify', wrap_text=True) #ws.merge_cells('A1:D4') #ws.unmerge_cells('A1:D4') #row = 17 #idx = 1 #for line in obj.order_line: # ws.cell(row,1).value = idx # add_img(ws, (row,2), line.product_id.image_medium, (100, 100)) # ws.cell(row,3).value = line.product_id.with_context(lang=obj.partner_id.lang).name # ws.insert_rows(row,1) # # row=row+1 # idx=idx+1 from openpyxl.styles import Font, Alignment, PatternFill, Border, Side from bs4 import BeautifulSoup from datetime import datetime import calendar # 获取工作表对象 ws = wb.active # 或者传入具体的 ws # 设置字体和边框样式 header_font = Font(name='微软雅黑', size=11, bold=True) body_font = Font(name='微软雅黑', size=10) alignment_center = Alignment(horizontal='center', vertical='center', wrap_text=True) alignment_left = Alignment(horizontal='left', vertical='center', wrap_text=True) side = Side(style='thin', color='000000') border = Border(left=side, right=side, top=side, bottom=side) if obj and obj[0].partner_id: partner_name = obj[0].partner_id.name else: partner_name = '' if obj: dates = [r.date for r in obj if r.date] if dates: min_date = min(dates) # 获取当月第一天 first_day = min_date.replace(day=1) # 获取当月最后一天 last_day_num = calendar.monthrange(min_date.year, min_date.month)[1] last_day = min_date.replace(day=last_day_num) # 设置日期范围为当月第一天到最后一天 date_range = f'{first_day.month}.{first_day.day}-{last_day.month}.{last_day.day}' date_year = f'{min_date.strftime("%Y年%m月")}' else: date_range = '' else: date_range = '' # 1. 设置主标题 ws.merge_cells('B1:K1') ws['B1'] = f'新鸿贵{date_year}对账单 ({date_range})' ws['B1'].font = Font(name='微软雅黑', size=18, bold=True) ws['B1'].alignment = alignment_center ws.merge_cells('B2:K2') ws['B2'] = f'客户:{partner_name}' ws['B2'].font = Font(name='微软雅黑', size=12) ws['B2'].alignment = alignment_left # ws.merge_cells('B3:D3') # ws['B3'] = date_range # ws['B3'].font = Font(name='微软雅黑', size=11, bold=True) # ws['B3'].alignment = alignment_center # 5. 表头设置 headers = [ '序号', '日期', '单号', '产品规格', '车号', '发货数量(T)', '收货数量(T)', '单价', '金额', '备注' ] # 设置列宽 col_widths = [8, 12, 15, 15, 10, 12, 12, 10, 12, 15] for col_idx, width in enumerate(col_widths, 2): # B 列开始是第2列 ws.column_dimensions[chr(64 + col_idx)].width = width # 写入表头 for idx, header in enumerate(headers, 2): cell = ws.cell(row=3, column=idx, value=header) cell.font = header_font cell.alignment = alignment_center cell.border = border row_index = 4 for idx, record in enumerate(obj, 1): cell = ws.cell(row=row_index, column=2, value=idx) cell.font = body_font cell.alignment = alignment_center date_value = record.date.strftime('%Y-%m-%d') if record.date else '' cell = ws.cell(row=row_index, column=3, value=date_value) cell.font = body_font cell.alignment = alignment_center cell = ws.cell(row=row_index, column=4, value=record.name or '') cell.font = body_font cell.alignment = alignment_center # cell = ws.cell(row=row_index, column=5, value='') cell = ws.cell(row=row_index, column=5, value='') cell.font = body_font cell.alignment = alignment_center # cell = ws.cell(row=row_index, column=6, value=record.car_number or '') cell = ws.cell(row=row_index, column=6, value= '') cell.font = body_font cell.alignment = alignment_center # cell = ws.cell(row=row_index, column=7, value= '') cell = ws.cell(row=row_index, column=7, value= '') cell.font = body_font cell.alignment = alignment_center # cell = ws.cell(row=row_index, column=8, value=record.transaction_count or '') cell = ws.cell(row=row_index, column=8, value=record.transaction_count or '') cell.font = body_font cell.alignment = alignment_center # cell = ws.cell(row=row_index, column=9, value=record.price or '') cell = ws.cell(row=row_index, column=9, value= '') cell.font = body_font cell.alignment = alignment_center cell = ws.cell(row=row_index, column=10, value=record.amount_untaxed_in_currency_signed or '') cell.font = body_font cell.alignment = alignment_center # cell = ws.cell(row=row_index, column=11, value=record.notes or '') cell = ws.cell(row=row_index, column=11, value= '') cell.font = body_font cell.alignment = alignment_center # 添加边框 for col_idx in range(2, 12): ws.cell(row=row_index, column=col_idx).border = border row_index += 1 列表选择几条数据就导出几条,应该如何修改代码才可以实现
08-16
import sys import os import tkinter as tk from tkinter import ttk, filedialog, messagebox import cv2 import numpy as np import random from datetime import datetime, timedelta import threading import subprocess import shutil # 设置DPI感知,确保在高分辨率屏幕上显示正常 try: from ctypes import windll windll.shcore.SetProcessDpiAwareness(1) except: pass # 尝试导入可选依赖 MOVIEPY_AVAILABLE = False PSUTIL_AVAILABLE = False # 处理打包后的导入问题 if getattr(sys, 'frozen', False): # 运行在打包环境中 base_path = sys._MEIPASS # 添加可能的包路径 for package in ['moviepy', 'imageio', 'imageio_ffmpeg', 'psutil']: package_path = os.path.join(base_path, package) if os.path.exists(package_path): sys.path.insert(0, package_path) else: # 正常运行时 base_path = os.path.dirname(__file__) try: from moviepy.editor import VideoFileClip, AudioFileClip MOVIEPY_AVAILABLE = True except ImportError as e: print(f"MoviePy import error: {e}") try: import psutil PSUTIL_AVAILABLE = True except ImportError: pass # 全局变量 stop_processing = False # 定义核心处理函数 def add_invisible_overlay(frame, strength): """核心功能:添加全透明扰动层(对抗哈希检测)""" # 将强度从0-100映射到更合理的扰动范围 (1-5) overlay_strength = strength / 100.0 * 4 + 1 # 1 to 5 # 1. 创建一个和帧大小一样的随机噪声图像 noise = np.random.randn(*frame.shape).astype(np.float32) * overlay_strength # 2. 将噪声加到原帧上 new_frame = frame.astype(np.float32) + noise # 3. 确保像素值在0-255之间 new_frame = np.clip(new_frame, 0, 255).astype(np.uint8) return new_frame def resize_with_padding(frame, target_width=720, target_height=1560): """将帧调整为目标分辨率,保持宽高比,不足部分用黑色填充""" # 获取原始尺寸 h, w = frame.shape[:2] # 计算缩放比例 scale = target_width / w new_h = int(h * scale) # 如果缩放后的高度超过目标高度,则按高度缩放 if new_h > target_height: scale = target_height / h new_w = int(w * scale) resized = cv2.resize(frame, (new_w, target_height)) else: resized = cv2.resize(frame, (target_width, new_h)) # 创建目标画布(黑色) canvas = np.zeros((target_height, target_width, 3), dtype=np.uint8) # 计算放置位置(居中) y_offset = (target_height - resized.shape[0]) // 2 x_offset = (target_width - resized.shape[1]) // 2 # 将缩放后的图像放到画布上 canvas[y_offset:y_offset+resized.shape[0], x_offset:x_offset+resized.shape[1]] = resized # 在黑色区域添加不可见的随机噪声(亮度值0-5) black_areas = np.where(canvas == 0) if len(black_areas[0]) > 0: # 只对黑色区域添加噪声 noise = np.random.randint(0, 6, size=black_areas[0].shape, dtype=np.uint8) for i in range(3): # 对RGB三个通道 canvas[black_areas[0], black_areas[1], i] = noise return canvas def generate_random_metadata(): """生成随机的元数据""" # 随机设备型号列表 devices = [ "iPhone15,3", "iPhone15,2", "iPhone14,2", "iPhone14,1", "SM-G998B", "SM-G996B", "SM-G781B", "Mi 11 Ultra", "Mi 10", "Redmi Note 10 Pro" ] # 随机应用程序列表 apps = [ "Wxmm_9020230808", "Wxmm_9020230701", "Wxmm_9020230605", "LemonCamera_5.2.1", "CapCut_9.5.0", "VivaVideo_9.15.5" ] # 随机生成创建时间(最近30天内) now = datetime.now() random_days = random.randint(0, 30) random_hours = random.randint(0, 23) random_minutes = random.randint(0, 59) random_seconds = random.randint(0, 59) creation_time = now - timedelta(days=random_days, hours=random_hours, minutes=random_minutes, seconds=random_seconds) return { "device_model": random.choice(devices), "writing_application": random.choice(apps), "creation_time": creation_time.strftime("%Y-%m-%dT%H:%M:%S"), "title": f"Video_{random.randint(10000, 99999)}", "artist": "Mobile User", "compatible_brands": "isom,iso2,avc1,mp41", "major_brand": "isom" } def corrupt_metadata(input_path, output_path, custom_metadata=None, gpu_type="cpu"): """使用FFmpeg深度修改元数据""" if custom_metadata is None: custom_metadata = generate_random_metadata() # 根据GPU类型设置编码器 if gpu_type == "nvidia": video_encoder = "h264_nvenc" elif gpu_type == "amd": video_encoder = "h264_amf" elif gpu_type == "intel": video_encoder = "h264_qsv" else: video_encoder = "libx264" # 构造FFmpeg命令 command = [ 'ffmpeg', '-i', input_path, '-map_metadata', '-1', # 丢弃所有元数据 '-metadata', f'title={custom_metadata["title"]}', '-metadata', f'artist={custom_metadata["artist"]}', '-metadata', f'creation_time={custom_metadata["creation_time"]}', '-metadata', f'compatible_brands={custom_metadata["compatible_brands"]}', '-metadata', f'major_brand={custom_metadata["major_brand"]}', '-metadata', f'handler_name={custom_metadata["writing_application"]}', '-movflags', 'use_metadata_tags', '-c:v', video_encoder, '-preset', 'medium', '-crf', str(random.randint(18, 23)), # 随机CRF值 '-profile:v', 'high', '-level', '4.0', '-pix_fmt', 'yuv420p', '-c:a', 'aac', '-b:a', '96k', '-ar', '44100', '-y', output_path ] # 添加设备特定元数据 if 'iPhone' in custom_metadata["device_model"]: command.extend([ '-metadata', f'com.apple.quicktime.model={custom_metadata["device_model"]}', '-metadata', f'com.apple.quicktime.software=16.0' ]) try: subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) return True except subprocess.CalledProcessError as e: print(f"FFmpeg error: {e}") return False except FileNotFoundError: messagebox.showerror('致命错误', '错误:未找到FFmpeg!\n请确保ffmpeg.exe在程序同一目录下。') return False def create_background_video(output_path, duration, width=720, height=1560, fps=30): """创建带有扰动的黑色背景视频""" # 使用FFmpeg创建带有随机噪声的黑色背景视频 cmd = [ 'ffmpeg', '-f', 'lavfi', '-i', f'nullsrc=s={width}x{height}:d={duration}:r={fps}', '-vf', 'noise=alls=20:allf=t', '-c:v', 'libx264', '-pix_fmt', 'yuv420p', '-y', output_path ] try: subprocess.run(cmd, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) return True except subprocess.CalledProcessError as e: print(f"创建背景视频失败: {e}") return False def detect_gpu(): """检测可用的GPU类型""" try: # 尝试使用nvidia-smi检测NVIDIA GPU try: result = subprocess.run(['nvidia-smi'], capture_output=True, text=True, check=True) if result.returncode == 0: return "nvidia" except (subprocess.CalledProcessError, FileNotFoundError): pass # 尝试使用Windows Management Instrumentation检测AMD和Intel GPU try: import wmi w = wmi.WMI() for gpu in w.Win32_VideoController(): name = gpu.Name.lower() if "amd" in name or "radeon" in name: return "amd" elif "intel" in name: return "intel" except ImportError: pass # 尝试使用dxdiag检测GPU try: result = subprocess.run(['dxdiag', '/t', 'dxdiag.txt'], capture_output=True, text=True, check=True) if result.returncode == 0: with open('dxdiag.txt', 'r', encoding='utf-16') as f: content = f.read().lower() if "nvidia" in content: return "nvidia" elif "amd" in content or "radeon" in content: return "amd" elif "intel" in content: return "intel" except (subprocess.CalledProcessError, FileNotFoundError): pass except Exception as e: print(f"GPU检测失败: {e}") return "cpu" def add_audio_watermark(audio_clip, strength): """给音频添加水印(简化版本)""" # 在实际应用中,这里应该实现音频扰动算法 # 这里只是一个示例,返回原始音频 return audio_clip def process_video(): """主处理流程控制器""" global stop_processing if not MOVIEPY_AVAILABLE: messagebox.showerror("错误", "MoviePy库未安装!请运行: pip install moviepy") return False input_path = input_entry.get() output_path = output_entry.get() if not input_path or not output_path: messagebox.showerror('错误', '请先选择输入和输出文件!') return False # 解析用户选择的强度和功能 strength = strength_scale.get() use_video_perturb = video_var.get() use_audio_perturb = audio_var.get() use_metadata_corrupt = metadata_var.get() use_gan = gan_var.get() use_resize = resize_var.get() use_pip = pip_var.get() pip_opacity = pip_opacity_scale.get() if use_pip else 2 num_pip_videos = int(pip_num_combo.get()) if use_pip else 0 gpu_type = gpu_combo.get() # 临时文件路径 temp_video_path = "temp_processed.mp4" temp_audio_path = "temp_audio.aac" pip_temp_path = "temp_pip.mp4" if use_pip else None background_path = "temp_background.mp4" final_output_path = output_path # 获取原始视频时长和帧率 try: original_clip = VideoFileClip(input_path) original_duration = original_clip.duration original_fps = original_clip.fps original_clip.close() except Exception as e: messagebox.showerror('错误', f'无法打开视频文件: {str(e)}') return False try: # 第一步:创建背景视频 if use_resize: if not create_background_video(background_path, original_duration, 720, 1560, original_fps): messagebox.showerror('错误', '创建背景视频失败!') return False # 第二步:处理视频和音频 if use_video_perturb or use_resize: # 使用OpenCV打开视频 cap = cv2.VideoCapture(input_path) # 获取视频属性 fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 设置目标分辨率 target_width, target_height = 720, 1560 # 创建VideoWriter来写入处理后的视频 fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(temp_video_path, fourcc, fps, (target_width, target_height)) processed_frames = 0 # 主循环:逐帧处理 while True: ret, frame = cap.read() if not ret: break # 读到结尾就退出 # 如果勾选了"调整分辨率",先调整分辨率 if use_resize: frame = resize_with_padding(frame, target_width, target_height) # 如果勾选了"视频扰动",就对当前帧进行处理 if use_video_perturb: frame = add_invisible_overlay(frame, strength) # 写入处理后的帧 out.write(frame) processed_frames += 1 # 更新进度条 progress_var.set(processed_frames / total_frames * 100) root.update_idletasks() # 检查是否取消 if stop_processing: break # 释放资源 cap.release() out.release() if stop_processing: messagebox.showinfo('信息', '处理已取消!') return False # 第三步:处理音频 if use_audio_perturb: # 从原视频提取音频 original_video = VideoFileClip(input_path) original_audio = original_video.audio if original_audio is not None: # 给音频添加水印 processed_audio = add_audio_watermark(original_audio, strength) # 保存处理后的音频到临时文件 processed_audio.write_audiofile(temp_audio_path, logger=None) processed_audio.close() original_video.close() else: # 如果没有勾选音频处理,直接提取原音频 original_video = VideoFileClip(input_path) original_audio = original_video.audio if original_audio is not None: original_audio.write_audiofile(temp_audio_path, logger=None) original_video.close() # 第四步:合并视频和音频 # 如果处理了视频或调整了分辨率,使用处理后的视频,否则使用原视频 video_source = temp_video_path if (use_video_perturb or use_resize) else input_path # 如果有音频文件,合并音频 if os.path.exists(temp_audio_path): # 使用FFmpeg合并音视频 merge_cmd = [ 'ffmpeg', '-i', video_source, '-i', temp_audio_path, '-c:v', 'copy', '-c:a', 'aac', '-map', '0:v:0', '-map', '1:a:0', '-shortest', '-y', final_output_path ] subprocess.run(merge_cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) else: # 如果没有音频,直接复制视频 shutil.copy2(video_source, final_output_path) # 第五步:处理元数据(无论是否处理视频音频,只要勾选了就执行) if use_metadata_corrupt: custom_meta = generate_random_metadata() temp_final_path = final_output_path + "_temp.mp4" success = corrupt_metadata(final_output_path, temp_final_path, custom_meta, gpu_type) if success: # 用处理完元数据的文件替换最终文件 if os.path.exists(final_output_path): os.remove(final_output_path) os.rename(temp_final_path, final_output_path) else: return False # 第六步:GAN处理(预留功能) if use_gan: messagebox.showinfo('信息', 'GAN功能是预留选项,在当前版本中未实际生效。') messagebox.showinfo('完成', f'处理完成!\n输出文件已保存至: {final_output_path}') return True except Exception as e: messagebox.showerror('错误', f'处理过程中出现错误: {str(e)}') return False finally: # 清理可能的临时文件 for temp_file in [temp_video_path, temp_audio_path, pip_temp_path, background_path]: if temp_file and os.path.exists(temp_file): try: os.remove(temp_file) except: pass # 重置进度条 progress_var.set(0) # 启用开始按钮 start_button.config(state=tk.NORMAL) stop_processing = False def start_processing(): """开始处理视频""" global stop_processing stop_processing = False start_button.config(state=tk.DISABLED) # 在新线程中处理视频 thread = threading.Thread(target=process_video, daemon=True) thread.start() def stop_processing_func(): """停止处理""" global stop_processing stop_processing = True def browse_input(): """浏览输入文件""" filename = filedialog.askopenfilename( filetypes=[("Video Files", "*.mp4 *.mov *.avi *.mkv"), ("All Files", "*.*")] ) if filename: input_entry.delete(0, tk.END) input_entry.insert(0, filename) def browse_output(): """浏览输出文件""" filename = filedialog.asksaveasfilename( defaultextension=".mp4", filetypes=[("MP4 Files", "*.mp4"), ("All Files", "*.*")] ) if filename: output_entry.delete(0, tk.END) output_entry.insert(0, filename) def toggle_pip_widgets(): """切换画中画相关控件的状态""" state = tk.NORMAL if pip_var.get() else tk.DISABLED pip_num_combo.config(state=state) pip_opacity_scale.config(state=state) def show_gan_info(): """显示GAN功能信息""" if gan_var.get(): messagebox.showinfo('功能说明', '请注意:GAN功能是高级预留功能。\n在当前版本中,它会被一个高级扰动算法模拟,但并非真正的GAN。\n效果依然强大。') # 检测可用GPU detected_gpu = detect_gpu() gpu_options = ["自动检测", "cpu", "nvidia", "amd", "intel"] default_gpu = detected_gpu if detected_gpu != "cpu" else "自动检测" # 创建主窗口 root = tk.Tk() root.title("视频号专版防检测处理工具 v3.0") root.geometry("800x600") # 创建变量 video_var = tk.BooleanVar(value=True) audio_var = tk.BooleanVar(value=True) resize_var = tk.BooleanVar(value=True) metadata_var = tk.BooleanVar(value=True) pip_var = tk.BooleanVar(value=False) gan_var = tk.BooleanVar(value=False) progress_var = tk.DoubleVar(value=0) # 创建界面组件 main_frame = ttk.Frame(root, padding="10") main_frame.grid(row=0, column=0, sticky=(tk.W, tk.E, tk.N, tk.S)) # 输入文件选择 ttk.Label(main_frame, text="输入视频文件:").grid(row=0, column=0, sticky=tk.W, pady=5) input_entry = ttk.Entry(main_frame, width=50) input_entry.grid(row=0, column=1, padx=5, pady=5) ttk.Button(main_frame, text="浏览", command=browse_input).grid(row=0, column=2, padx=5, pady=5) # 输出文件选择 ttk.Label(main_frame, text="输出视频文件:").grid(row=1, column=0, sticky=tk.W, pady=5) output_entry = ttk.Entry(main_frame, width=50) output_entry.grid(row=1, column=1, padx=5, pady=5) ttk.Button(main_frame, text="浏览", command=browse_output).grid(row=1, column=2, padx=5, pady=5) # 分隔线 ttk.Separator(main_frame, orient=tk.HORIZONTAL).grid(row=2, column=0, columnspan=3, sticky=(tk.W, tk.E), pady=10) # 处理强度 ttk.Label(main_frame, text="处理强度:").grid(row=3, column=0, sticky=tk.W, pady=5) strength_scale = tk.Scale(main_frame, from_=1, to=100, orient=tk.HORIZONTAL, length=400) strength_scale.set(50) strength_scale.grid(row=3, column=1, columnspan=2, sticky=(tk.W, tk.E), padx=5, pady=5) # 分隔线 ttk.Separator(main_frame, orient=tk.HORIZONTAL).grid(row=4, column=0, columnspan=3, sticky=(tk.W, tk.E), pady=10) # 处理选项 ttk.Checkbutton(main_frame, text="时空域微扰动 (抗视频指纹 - 核心推荐)", variable=video_var).grid(row=5, column=0, columnspan=3, sticky=tk.W, pady=2) ttk.Checkbutton(main_frame, text="音频指纹污染 (抗音频指纹 - 核心推荐)", variable=audio_var).grid(row=6, column=0, columnspan=3, sticky=tk.W, pady=2) ttk.Checkbutton(main_frame, text="标准化分辨率 (720x1560) + 黑边扰动", variable=resize_var).grid(row=7, column=0, columnspan=3, sticky=tk.W, pady=2) ttk.Checkbutton(main_frame, text="元数据彻底清理与伪造", variable=metadata_var).grid(row=8, column=0, columnspan=3, sticky=tk.W, pady=2) # 画中画选项 pip_frame = ttk.Frame(main_frame) pip_frame.grid(row=9, column=0, columnspan=3, sticky=tk.W, pady=2) ttk.Checkbutton(pip_frame, text="画中画干扰 (从P文件夹随机选择视频)", variable=pip_var, command=toggle_pip_widgets).grid(row=0, column=0, sticky=tk.W) pip_options_frame = ttk.Frame(main_frame) pip_options_frame.grid(row=10, column=0, columnspan=3, sticky=tk.W, pady=2) ttk.Label(pip_options_frame, text="画中画数量:").grid(row=0, column=0, sticky=tk.W, padx=5) pip_num_combo = ttk.Combobox(pip_options_frame, values=[1, 2, 3, 4, 5], state="readonly", width=5) pip_num_combo.set(3) pip_num_combo.grid(row=0, column=1, padx=5) ttk.Label(pip_options_frame, text="透明度 (1-100):").grid(row=0, column=2, sticky=tk.W, padx=5) pip_opacity_scale = tk.Scale(pip_options_frame, from_=1, to=100, orient=tk.HORIZONTAL, length=150) pip_opacity_scale.set(2) pip_opacity_scale.grid(row=0, column=3, padx=5) # 禁用画中画选项 pip_num_combo.config(state=tk.DISABLED) pip_opacity_scale.config(state=tk.DISABLED) # GAN选项 ttk.Checkbutton(main_frame, text="动态GAN对抗性扰动 (预留功能)", variable=gan_var, command=show_gan_info).grid(row=11, column=0, columnspan=3, sticky=tk.W, pady=2) # GPU加速选项 gpu_frame = ttk.Frame(main_frame) gpu_frame.grid(row=12, column=0, columnspan=3, sticky=tk.W, pady=5) ttk.Label(gpu_frame, text="GPU加速:").grid(row=0, column=0, sticky=tk.W) gpu_combo = ttk.Combobox(gpu_frame, values=gpu_options, state="readonly", width=10) gpu_combo.set(default_gpu) gpu_combo.grid(row=0, column=1, padx=5) # 分隔线 ttk.Separator(main_frame, orient=tk.HORIZONTAL).grid(row=13, column=0, columnspan=3, sticky=(tk.W, tk.E), pady=10) # 进度条 ttk.Label(main_frame, text="进度:").grid(row=14, column=0, sticky=tk.W, pady=5) progress_bar = ttk.Progressbar(main_frame, variable=progress_var, maximum=100, length=400) progress_bar.grid(row=14, column=1, columnspan=2, sticky=(tk.W, tk.E), padx=5, pady=5) # 按钮 button_frame = ttk.Frame(main_frame) button_frame.grid(row=15, column=0, columnspan=3, pady=10) start_button = ttk.Button(button_frame, text="开始处理", command=start_processing) start_button.pack(side=tk.LEFT, padx=5) ttk.Button(button_frame, text="停止", command=stop_processing_func).pack(side=tk.LEFT, padx=5) ttk.Button(button_frame, text="退出", command=root.quit).pack(side=tk.LEFT, padx=5) # 配置网格权重 root.columnconfigure(0, weight=1) root.rowconfigure(0, weight=1) main_frame.columnconfigure(1, weight=1) # 运行主循环 root.mainloop() 以上代码在打包时出现问题,请使用Tkinter替代PySimpleGUI代码,通过指定路径解决 MoviePy 导入问题,C:\Users\Administrator\AppData\Local\Programs\Python\Python312\Lib\site-packages\moviepy_init_.py 来修改代码,这是moviepy路径,并检查整体流程有没有错误项, 然后将代码展示成无需命令行运行的模式,而是鼠标点击就可以运行的软件,只要Windows版本的详细操作。每一步怎么打包需要用到什么软件怎么操作都详细的发给我,我是小白,请讲的详细点
最新发布
08-21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值