Given the root of a binary tree, then value v
and depth d
,
you need to add a row of nodes with value v
at the given depth d
.
The root node is at depth 1.
The adding rule is: given a positive integer depth d
, for each NOT null tree nodes N
in
depth d-1
, create two tree nodes with value v
as N's
left
subtree root and right subtree root. And N's
original left subtree should
be the left subtree of the new left subtree root, its original right subtree should be the right subtree of the new right subtree root. If depth d
is
1 that means there is no depth d-1 at all, then create a tree node with value v as the new root of the whole original tree, and the original tree is the new root's left subtree.
Example 1:
Input: A binary tree as following: 4 / \ 2 6 / \ / 3 1 5 v = 1 d = 2 Output: 4 / \ 1 1 / \ 2 6 / \ / 3 1 5
Example 2:
Input: A binary tree as following: 4 / 2 / \ 3 1 v = 1 d = 3 Output: 4 / 2 / \ 1 1 / \ 3 1
Note:
- The given d is in range [1, maximum depth of the given tree + 1].
- The given binary tree has at least one tree node.
public class addOneRow
{
public TreeNode addOneRow(TreeNode root,int v,int d)
{
if(d == 1)
{
TreeNode newroot = new TreeNode(v);
newroot.left =root;
return newroot;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
for(int i = 0; i < d - 2; i++) //用for循环来层次遍历,得到所要添加的深度的上一层的所有节点,并将结果保存在一个queue队列里
{
int size = queue.size();
for(int j = 0; j < size; j++)
{
TreeNode t = queue.poll();
if(t.left != null)
queue.add(t.left);
if(t.right != null)
queue.add(t.right);
}
}
while(!queue.isEmpty()) //对保存有需要添加深度的上一层所有节点的队列,我们依次对每一个节点添加新的节点,并将每一个节点原来的左右子树赋给新添加节点的左右子树
{
TreeNode t = queue.poll();
TreeNode newparent1 = new TreeNode(v);
TreeNode tmp = t.left;
t.left = newparent1;
newparent1.left = tmp;
TreeNode newparent2 = new TreeNode(v);
tmp = t.right;
t.right = newparent2;
newparent2.right = tmp;
}
return root;
}
}