Given a set of N (> 1) positive integers, you are supposed to partition them into two disjoint sets A1 and A2 of n1 and n2numbers, respectively. Let S1 and S2 denote the sums of all the numbers in A1 and A2, respectively. You are supposed to make the partition so that |n1 - n2| is minimized first, and then |S1 - S2| is maximized.
Input Specification:
Each input file contains one test case. For each case, the first line gives an integer N (2 <= N <= 105), and then N positive integers follow in the next line, separated by spaces. It is guaranteed that all the integers and their sum are less than 231.
Output Specification:
For each case, print in a line two numbers: |n1 - n2| and |S1 - S2|, separated by exactly one space.
Sample Input 1:10 23 8 10 99 46 2333 46 1 666 555Sample Output 1:
0 3611Sample Input 2:
13 110 79 218 69 3721 100 29 135 2 6 13 5188 85Sample Output 2:
1 9359
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
int main()
{
int n,sum1=0,sum2=0;
cin>>n;
vector<int> num(n);
for(int i=0;i<n;i++)
{
cin>>num[i];
sum1=sum1+num[i];
}
sort(num.begin(),num.end());
for(int i=0;i<n/2;i++)
{
sum2=sum2+num[i];
}
cout<<n%2<<" "<<sum1-2*sum2<<endl;
return 0;
}
本文介绍了一种算法,用于将一组正整数等分为两个子集,使得两子集元素数量之差最小,并在此基础上最大化两子集元素总和之差的绝对值。输入为一组正整数,输出为两子集元素数量之差及元素总和之差。
476

被折叠的 条评论
为什么被折叠?



