A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line "Yes" if N is a reversible prime with radix D, or "No" if not.
Sample Input:73 10 23 2 23 10 -2Sample Output:
Yes Yes No
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
bool isPrime(int n)
{
if(n<=1) return false;
int sqr=sqrt(1.0*n);
for(int i=2;i<=sqr;i++)
{
if(n%i==0) return false;
}
return true;
}
int d[111];
int main()
{
int n,radix;
while(scanf("%d",&n)!=EOF)
{
if(n<0) break;
scanf("%d",&radix);
if(isPrime(n)==false)
{
printf("No\n");
}
else
{
int len=0,product=1;
do
{
d[len++]=n%radix;
n=n/radix;
}while(n!=0);
for(int i=0;i<len;i++)
{
n=n*radix+d[i];
}
if(isPrime(n)==true) printf("Yes\n");
else printf("No\n");
}
}
return 0;
}
本文介绍了一种算法,用于判断一个正整数N在特定进制D下是否为可逆素数。可逆素数是指在一个数系中,该数及其反转数均为素数的情况。文章提供了完整的输入输出说明及示例,并附带了C++实现代码。
984

被折叠的 条评论
为什么被折叠?



