机器学习 - 训练/测试

从要测试的数据集开始。

我们的数据集展示了商店中的 100 位顾客及其购物习惯。

实例

import numpy
import matplotlib.pyplot as plt
numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)
y = numpy.random.normal(150, 40, 100) / x

plt.scatter(x, y)
plt.show()

结果:

x 轴表示购买前的分钟数。

y 轴表示在购买上花费的金额。

运行实例

拆分训练/测试

训练集应该是原始数据的 80% 的随机选择。

测试集应该是剩余的 20%。

train_x = x[:80]
train_y = y[:80]

test_x = x[80:]
test_y = y[80:]

显示训练集

显示与训练集相同的散点图:

实例

plt.scatter(train_x, train_y)
plt.show()

结果:

它看起来像原始数据集,因此似乎是一个合理的选择:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xhw79

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值