仍然是多重背包DP,我的算法基本和上题一模一样,但是本题物品比较多,需要组合一下,然后01背包来搞,注意组合物品和DP过程中物品数的累加不要惯性地用加一来DP了。这个在算法在时间上不是最优的,背包九讲上有O(VN)的算法,但我看不大懂,一知半解,就不想去重写了,只好作罢。下次有碰到的话再说吧,我提交的执行时间是150ms,看到排第一的有0ms的,估计用了O(VN)的算法
#include<stdio.h>
#include<string.h>
static int min(int a, int b)
{
return a < b ? a : b;
}
static int pack[50], amount[50], tt;
static void fill_pack(int total, int cents)
{
int sum = 0, k = 1;
while (1)
{
if (sum + k >= total)
break;
sum += k;
pack[tt] = k * cents;
amount[tt++] = k;
k *= 2;
}
if (total - sum)
{
pack[tt] = (total - sum) * cents;
amount[tt++] = total - sum;
}
}
int main()
{
int p, c1, c2, c3, c4, dp[10001], path[10001], res[26];
while (scanf("%d %d %d %d %d", &p, &c1, &c2, &c3, &c4), p || c1 || c2 || c3
|| c4)
{
c1 = min(p, c1), c2 = min(p / 5, c2), c3 = min(p / 10, c3), c4 = min(
p / 25, c4);
tt = 0;
fill_pack(c1, 1);
fill_pack(c2, 5);
fill_pack(c3, 10);
fill_pack(c4, 25);
int i, j;
dp[0] = 0;
for (i = 1; i <= p; i++)
dp[i] = -1;
for (i = 0; i < tt; i++)
for (j = p; j >= pack[i]; j--)
if (dp[j - pack[i]] != -1
&& dp[j - pack[i]] + amount[i] > dp[j])
{
dp[j] = dp[j - pack[i]] + amount[i];
path[j] = i;
}
if (dp[p] != -1)
{
memset(res, 0, sizeof(res));
while (p)
{
int ii = path[p];
res[pack[ii] / amount[ii]] += amount[ii];
p -= pack[ii];
}
printf(
"Throw in %d cents, %d nickels, %d dimes, and %d quarters.\n",
res[1], res[5], res[10], res[25]);
}
else
puts("Charlie cannot buy coffee.");
}
return 0;
}