LeetCode - easy-747. Min Cost Climbing Stairs

本文介绍了一种寻找从楼梯底部到达顶部最小成本的算法。给定每个阶梯的成本,可以选择每次爬一阶或两阶。算法提供了两种解决方案:一种使用动态规划数组,另一种则优化空间复杂度至O(1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

Example 1:

Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.

Example 2:

Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].

Note:
1. cost will have a length in the range [2, 1000].
2. Every cost[i] will be an integer in the range [0, 999].

代码

class Solution {
public:
  //方法1:
    int minCostClimbingStairs(vector<int>& cost) {
        int N = cost.size();
        if(N == 0) return 0;
        if(N == 1) return cost[0];
        //if(N == 2) return getMin(cost[0], cost[1]);
        int dp[N+1];
        dp[0] = 0;
        dp[1] = 0;
        for(int i=2; i<=N; i++)
        {
            dp[i] = getMin(dp[i-2]+cost[i-2], dp[i-1]+cost[i-1]);
        }
        return dp[N];
    }

    int getMin(int a, int b)
    {
        return a > b ? b : a;
    }

    //methon 2: O(1) space complexity
    int minCostClimbingStairs(vector<int>& cost) {
        int N = cost.size();
        if(N == 0) return 0;
        if(N == 1) return cost[0];
        int i_2 = 0;
        int i_1 = 0;
        int temp;
        for(int i=2; i<=N; i++)
        {
            temp = i_1;
            i_1 = getMin(i_1+cost[i-1], i_2+cost[i-2]);
            i_2 = temp;
        }
        return i_1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值