Problem Description
Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number
can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.
Input
The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer
less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.
Output
For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated
in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number
must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.
Sample Input
4 6 4 3 2 2 1 1 5 3 2 1 1 400 12 50 50 50 50 50 50 25 25 25 25 25 25 0 0
Sample Output
Sums of 4: 4 3+1 2+2 2+1+1 Sums of 5: NONE Sums of 400: 50+50+50+50+50+50+25+25+25+25 50+50+50+50+50+25+25+25+25+25+25#include <iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<string> #include<queue> #include<cstdlib> #include<map> using namespace std; int n,m; int a[13];//存取的数的个数,a[i]表示第i种数取a[i]个 int b[36][2]={0};//存数和数的个数b[i][0]表示第i种数是什么,b[i][1]表示第i种数有多少个 int h; int ss(int t1,int t,int s) { if(t1>t) return 0; for(int i=b[t1][1];i>=0;i--) { if(s-i*b[t1][0]==0)//满足条件 { h++; a[t1]=i; string s; for(int j=0;j<=t1;j++)//数的种类 { for(int k=a[j];k>=1;k--)//取该种数的个数 { s+=b[j][0];//string记录 } } for(int j=0;j<s.length()-1;j++)//输出 printf("%d+",s[j]); printf("%d\n",s[s.length()-1]); } else if(s-i*b[t1][0]>0)//取数后还可再取其他种类数 { a[t1]=i; ss(t1+1,t,s-i*b[t1][0]); } } } int main() { while(~scanf("%d %d",&n,&m)) { h=0; memset(b,0,sizeof(b)); memset(a,0,sizeof(a)); int t=0; if(n==0&&m==0) break; printf("Sums of %d:\n",n); scanf("%d",&b[0][0]); b[0][1]++; for(int i=0;i<m-1;i++)//因为题目给出数是不增的,所以可以这样存入数据 { int f; scanf("%d",&f); if(f==b[t][0]) b[t][1]++; else t++,b[t][0]=f,b[t][1]++; } ss(0,t,n); if(h==0)//判断是否有过输出 printf("NONE\n"); } }
本文探讨了一个特定的算法问题:给定一个目标总和及一组整数,如何找出所有可能的组合,使得这些组合的元素之和等于目标总和。文章详细介绍了问题的输入输出格式,并提供了一个具体的示例来帮助理解。
421

被折叠的 条评论
为什么被折叠?



