求两个有序数组的中位数


如果有两个有序的数组,都是已经排好序的。那么求它们的中位数应该怎样求呢。如果采用对这两个数组进行排序的方法,最快的时间复杂度也要o(nlogn)的时间。但是,如果采用中位数和顺序统学的方法来寻找,则可以在o(n)的时间内解决这个问题。

       我们先寻找每个数组的中位数,因为是排好顺序的数组,因此,可以在o(1)时间内找到。然后,比较这两个数字的大小。如果A的中位数大于B的中位数,则在A的前半个数组和B的后半个数组中寻找,反之,在B的前半个数组和A的后半个数组寻找。根据递归方程,解得时间复杂度是o(n)。

       中位数:一组数据中间位置的数,如果是偶数个数,则取中间两个位置数的平均值。

       此题两个数组个数一样,那么两个数组的中位数总个数是2*n也就是偶数,中位数一定是中间两个位置的平均数。时间复杂度要求O(logn),则一定要充分利用数组有序的信息。

       网上看了很多版本,都是对奇偶数的考虑不全。自己试着编写了一下,发现很多细节很容易忽略。测试考虑的是整数,可以把数组直接全部设置为double类型。如果是整型,要考虑结果类型的强制转换。还有最后递归结束条件只考虑两数组中只剩下一个元素,或者中位数相等的两种情况。大家可以多找几个例子试验下。此代码在VC++6.0上测试过。大家可以自己再测试下,有问题的话欢迎提出。代码如下:

void sort(int a[], int length)
{
        if(a == NULL || length <=0)
             return;
        int i,j,temp;
        for(i=0;i<length;i++)
             for(j=1;j<length-i;j++)
                 if(a[j-1]>a[j])
                 {
                        temp = a[j-1];
                        a[j-1] = a[j];
                        a[j] = temp;
                 }
}
//最后返回结果一定要是double,因为是两个中位数的平均值不一定是整数
double MidNum(int *A,int l1,int r1,int *B,int l2,int r2)
{
	//根据奇偶决定中位数的位置,要保证两个字数组元素个数相等
	int mid1,mid2;
	if( (r1-l1+1)%2==0 )	//偶数时
	{
		mid1=(l1+r1)/2+1;	//A取下中位数
		mid2=(l2+r2)/2;		//B取上中位数
	}
	else					//奇数时
	{
		mid1=(l1+r1)/2;
		mid2=(l2+r2)/2;
	}

	if(l1==r1 && l2==r2)			//最后两个数组都剩下一个元素
		return (double)(A[l1]+B[l2])/2;		
	//最后两个数组都剩下两个元素,而且A[mid1]>B[mid2],底下的情况处理不了,一直递归下去
	//如A[6]={1,3,5,6,8,10};B[6]={2,4,7,9,11,15};最后A{6,8},B{4,7}
	if( r1-l1==1 && r2-l2==1 )		
	{
		int c[4];
		c[0]=A[l1];
		c[1]=A[r1];
		c[2]=B[l2];
		c[3]=B[r2];
		sort(c,4);
		return (double)(c[1]+c[2])/2;
	}
	if(A[mid1]==B[mid2])
		return A[mid1];
	else if( A[mid1] > B[mid2])
		return MidNum(A,l1,mid1,B,mid2,r2);
	else 
		return MidNum(A,mid1,r1,B,l2,mid2);
}


int main()
{
	int A[6]={1,3,5,6,8,10};
	int B[6]={2,4,6,9,11,15};

	double m2=MidNum(A,0,5,B,0,5);
	cout<<m2<<endl;

	int A2[10]={17,18,28,37,42,54,63,72,89,96};
	int B2[10]={3,51,71,72,91,111,121,131,141,1000};

	double m=MidNum(A2,0,9,B2,0,9);
	cout<<m<<endl;

	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值