声明:原题目转载自中山大学sicily平台,解答部分为原创
Problem :
定义超级和函数F如下:
F(0, n) = n,对于所有的正整数n..
F(k, n) = F(k – 1, 1) + F(k – 1, 2) + … + F(k – 1, n),对于所有的正整数 k 和 n.
请实现下面Solution类中计算F(k, n)的函数(1 <= k, n <= 14).
class Solution {
public:
int F(int k, int n) {
}
};
例1:F(1, 3) = 6
例2:F(2, 3) = 10
例3:F(10, 10) = 167960
Solution:
思路:简单动态规划题,根据定义得出状态转换方程 F(k, n)= F(k - 1, n)+ F(k, n - 1)代码如下:
class Solution {
public:
int F(int k, int n) {
vector<vector<int> > num(k + 1, vector<int>(n + 1));
for(int i = 0; i <= k; i ++)
{
for(int j = 1; j <= n; j ++)
{
if(i == 0)
num[i][j] = j;
else
{
num[i][j] = num[i][j - 1] + num[i - 1][j];
}
}
}
return num[k][n];
}
};