1.
f=O(g(n)),O为上界 ∃const c>0,n0>0,使得0≤f(n)≤cg(n),for all n≥n0,
其中f(n)可看作是g(n)构成的函数集
定义:O(g(n))={f(n)|∃const c>0,n0>0,使得0≤f(n)≤c(g(n)),for all n≥n0}
Ex:2n2=O((n))/2n2∈O(n3)
2.
Macro convention: A set in a formula represents an anonymous function in that set.
Ex1: f(n)=n3+O(n2) means there is function h(n)∈O(n2)
such that f(n)=n3+h(n)
Ex2: n2+O(n)=O(n2) means for any f(n)∈O(n)
there is an h(n)∈O(n2),such that n2+f(n)=h(n)
3.
Ω nonation(下界)
Ω(g(n))={f(n)|∃ const c>0,n0>0,such that 0≤cg(n)≤f(n)
for all n≥n0}
Ex1:n√=Ω(logn)Θ(g(n))=O(g(n))∩Ω(g(n))
o 和 ω 分别对应 O 和 Ω, 只是没有等号。
Ex2:2n2=o(n3) means 2n2<cn3,12n2=Θ(n2)≠o(n2)