1001 sum
计算下前缀和,看有没有模m相同的即可。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<bitset>
using namespace std;
int pp[5100];
int T;
int flag;
int n,k;
int sum;
int main()
{
scanf("%d",&T);
while (T--)
{
flag=0;
memset(pp,0,sizeof(pp));
pp[0]=1;
scanf("%d %d",&n,&k);
sum=0;
for (int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
sum=(sum+x)%k;
if (pp[sum]) flag=1;
pp[sum]=1;
}
if (flag) printf("YES\n");
else printf("NO\n");
}
return 0;
}
1002 domino
贪心去掉
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<bitset>
using namespace std;
typedef long long LL;
int a[110000];
int T;
int flag;
int n,k;
LL ans;
int main()
{
scanf("%d",&T);
while (T--)
{
scanf("%d %d",&n,&k);
for (int i=1;i<n;i++)
scanf("%d",&a[i]);
sort(a+1,a+n);
ans=0;
for (int i=1;i<=max(n-k,0);i++)
ans+=(LL)(a[i]+1LL);
cout<<ans+min((LL)k,(LL)n)<<endl;
}
return 0;
}
1003 abs
因为y的每个质因子的次数都为2,所以y为完全平方数,然后暴力枚举下
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<bitset>
#include<ctime>
using namespace std;
typedef long long LL;
LL x;
int T;
LL ans1,ans2;
int check(LL x)
{
for (LL i=2;i*i<=x;i++)
{
if (x%i==0)
{
x/=i;
if (x%i==0) return 0;
}
}
return 1;
}
int main()
{
cin>>T;
while (T--)
{
cin>>x;
LL d=(LL)sqrt((double)x+0.5);
for (LL i=1;;i++)
{
if (check(d+i)&&d+i>=2)
{
ans1=abs(x-(d+i)*(d+i));
break;
}
}
ans2=1e18;
for (LL i=0;;i++)
{
if ((d-i)<2) break;
if (check(d-i))
{
ans2=abs(x-(d-i)*(d-i));
break;
}
}
cout<<min(ans1,ans2)<<endl;
}
return 0;
}
1004 Tower Defence
dp,f[i][j][k],i表示1号点所在的联通块的大小,
f[i][j][k]∗Cln−i∗(2k−1)∗(2l(l−1)2)
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<bitset>
#include<ctime>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
int n,k;
LL f[61][61][61];
LL ans;
LL pow_mod(LL a,LL b,LL p)
{
LL tmp=1;
a%=p;
for(LL i=b;i;i>>=1,a=a*a%p)
if(i&1)tmp=tmp*a%p;
return tmp;
}
int T;
LL C[70][70];
int main()
{
C[0][0]=1;
for(int i=1;i<=61;i++){
C[i][0]=1;
for (int j=1;j<=i;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
}
scanf("%d",&T);
while (T--)
{
scanf("%d %d",&n,&k);
memset(f,0,sizeof(f));
f[1][0][1]=1;
ans=0;
for (int i=0;i<k;i++)
{
for (int j=1;j<=n;j++)
for (int l=1;l<=j;l++)
{
if (f[j][i][l]==0) continue;
ans=(ans+f[j][i][l]*pow_mod(2,(LL)(n-j)*(n-j-1)/2LL,mod))%mod;
for (int ll=1;ll<=n-j;ll++)
{
LL d=(((f[j][i][l]*pow_mod(pow_mod(2,l,mod)-1+mod,ll,mod))%mod)*pow_mod(2,(LL)(ll)*(ll-1)/2LL,mod))%mod;
d=(d*C[n-j][ll])%mod;
f[j+ll][i+1][ll]=(f[j+ll][i+1][ll]+d)%mod;
}
}
}
cout<<ans<<endl;
}
return 0;
}
1005 gcd
首先证明一个小结论:
当x≠1时,不妨设a>b:
∵(xa−1)≡−1(modx)
∴gcd(xa−1,xa−b)=1
∴gcd(xa−1,xb−1)=gcd(xa−1,xa−xa−b)=gcd(xa−b−1,xa−1)
由此可以得出:
gcd(xa−1,xb−1)=xgcd(a,b)−1
∴∑gcd(xa−1,xb−1)=∑∑xgcd(a,b)−1
枚举d=gcd(a,b),设其出现次数为s[d],易得
s[d]=2∗(ϕ(1)+ϕ(2)+⋯+ϕ(nd))−1
我们发现s[d]的值只与nd的有关,且这个值在1到
s[nl]∗∑i=lr(xi−1)
s数组的值可以预处理出来,后面那部分可以利用等比数列公式和乘法逆元求得,总的时间复杂度为
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<bitset>
using namespace std;
typedef long long LL;
int T;
const int maxn=1100000;
const LL mod=1e9+7;
LL phi[maxn];
LL sum[maxn];
LL ans;
LL x,n;
LL l,r;
void getPhi()
{
for (int i=1;i<maxn;i++)
phi[i]=i;
for (LL i=2;i<maxn;i++)
if (i==phi[i])
for (LL j=i;j<maxn;j+=i)
phi[j]=(phi[j]/i)*(i-1);
}
LL cal(LL x)
{
LL l=1,r=n,ans;
while (l<=r)
{
LL mid=l+r>>1;
if (n/mid>=x) ans=mid,l=mid+1;
else r=mid-1;
}
return ans;
}
LL extended_gcd(LL a,LL b,LL &x,LL &y)
{
if (b==0)
{
x=1,y=0;
return a;
}
else
{
LL r=extended_gcd(b,a%b,y,x);
y-=x*(a/b);
return r;
}
}
LL pow_mod(LL a,LL b,LL p)
{
LL tmp=1;
a%=p;
for(LL i=b;i;i>>=1,a=a*a%p)
if(i&1)tmp=tmp*a%p;
return tmp;
}
LL inv(LL a,LL n)
{
LL xx,yy,d=extended_gcd(a,n,xx,yy);
return (xx%n+n)%n;
}
LL cc(LL l,LL r)
{
LL res=(pow_mod(x,r+1,mod)-pow_mod(x,l,mod)+mod)*(inv(x-1,mod))%mod;
res=(res-r+l-1+mod)%mod;
return res;
}
int main()
{
getPhi();
for (int i=1;i<maxn;i++)
sum[i]=(sum[i-1]+phi[i])%mod;
for (int i=1;i<maxn;i++)
sum[i]=(2*sum[i]-1)%mod;
cin>>T;
while (T--)
{
cin>>x>>n;
if (x==1)
{
cout<<0<<endl;
continue;
}
ans=0;
l=1;
while (l<=n)
{
r=cal(n/l);
ans=(ans+cc(l,r)*sum[n/l])%mod;
l=r+1;
}
cout<<ans<<endl;
}
return 0;
}