Balanced Lineup(线段树——根据区间找最值)

本文介绍了一种使用线段树解决寻找特定范围内最大值与最小值的问题,以帮助农民约翰在游戏中选择高度相近的奶牛组。通过构建线段树并进行区间查询,实现了高效求解指定区间内奶牛高度的最大值与最小值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Balanced Lineup

Time Limit: 5000ms
Memory Limit: 65536KB
64-bit integer IO format: %lld      Java class name: Main

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q.
Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2.. N+ Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

Output

Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

   query()函数


#include <stdio.h>
#include <algorithm>
#define MAX 50000
using namespace std;
int a[MAX+10];
int low, hei;
struct node{
    int mx, mn;
}seg[MAX*4+10];

void build(int node, int l, int r)
{
    if(l == r){
        seg[node].mn = seg[node].mx = a[l];
        return;
    }
    int m = (l + r) / 2;
    build(node * 2, l, m);
    build(node * 2 + 1, m + 1, r);
    seg[node].mn = seg[node*2].mn < seg[node*2+1].mn ? seg[node*2].mn : seg[node*2+1].mn;
    seg[node].mx = seg[node*2].mx > seg[node*2+1].mx ? seg[node*2].mx : seg[node*2+1].mx;
}

void query (int node, int l, int r, int s, int e)
{
    if (l == s && r == e)
    {
        low = min (low, seg[node].mn);
        hei = max (hei, seg[node].mx);
        return ;
    }
    int m = (l + r) / 2;
    if (e <= m)
        query (2 * node, l, m, s, e);
    else if (s >= m + 1)
        query (2 * node + 1, m + 1, r, s, e);
    else
    {
        query(node * 2, l, m, s, m);
        query (2 * node + 1, m + 1, r, m + 1, e);
    }
}

int main()
{
    int n, m;
    scanf("%d %d", &n, &m);
    for(int i = 1; i <= n; i ++ ){
        scanf("%d", &a[i]);
    }
    build(1, 1, n);
    while(m -- ){
        int a, b;
        scanf("%d %d", &a, &b);
        low = 1000001;
        hei = 0;
        query(1, 1, n, a, b);
        printf("%d\n", hei - low);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值