非极大值抑制(Non-maximum suppression,NMS)是一种去除非极大值的算法,常用于计算机视觉中的边缘检测、物体识别等。
算法流程:
给出一张图片和上面许多物体检测的候选框(即每个框可能都代表某种物体),但是这些框很可能有互相重叠的部分,我们要做的就是只保留最优的框。假设有N个框,每个框被分类器计算得到的分数为Si, 1<=i<=N。
0、建造一个存放待处理候选框的集合H,初始化为包含全部N个框;
建造一个存放最优框的集合M,初始化为空集。
1、将所有集合 H 中的框进行排序,选出分数最高的框 m,从集合 H 移到集合 M;
2、遍历集合 H 中的框,分别与框 m 计算交并比(Interection-over-union,IoU),如果高于某个阈值(一般为0~0.5),则认为此框与 m 重叠,将此框从集合 H 中去除。
3、回到第1步进行迭代,直到集合 H 为空。集合 M 中的框为我们所需。
需要优化的参数:
IoU 的阈值是一个可优化的参数,一般范围为0~0.5,可以使用交叉验证来选择最优的参数。
示例:
比如人脸识别的一个例子:
已经识别出了 5 个候选框,但是我们只需要最后保留两个人脸。
首先选出分数最大的框(0.98),然后遍历剩余框,计算 IoU,会发现露丝脸上的两个绿框都和 0.98 的框重叠率很大,都要去除。
然后只剩下杰克脸上两个框,选出最大框(0.81),然后遍历剩余框(只剩下0.67这一个了),发现0.67这个框与 0.81 的 IoU 也很大,去除。
至此所有框处理完毕,算法结果:
1、NMS的原理
NMS(Non-Maximum Suppression)算法本质是搜索局部极大值,抑制非极大值元素。NMS就是需要根据score矩阵和region的坐标信息,从中找到置信度比较高的bounding box。NMS是大部分深度学习目标检测网络所需要的,大致算法流程为:
1.对所有预测框的置信度降序排序
2.选出置信度最高的预测框,确认其为正确预测,并计算他与其他预测框的IOU
3.根据2中计算的IOU去除重叠度高的,IOU>threshold就删除
4.剩下的预测框返回第1步,直到没有剩下的为止
需要注意的是:Non-Maximum Suppression一次处理一个类别,如果有N个类别,Non-Maximum Suppression就需要执行N次。
2、NMS的实现代码详解(来自Fast-RCNN)
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
import numpy as np
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1] #[::-1]表示降序排序,输出为其对应序号
keep = [] #需要保留的bounding box
while order.size > 0:
i = order[0] #取置信度最大的(即第一个)框
keep.append(i) #将其作为保留的框
#以下计算置信度最大的框(order[0])与其它所有的框(order[1:],即第二到最后一个)框的IOU,以下都是以向量形式表示和计算
xx1 = np.maximum(x1[i], x1[order[1:]]) #计算xmin的max,即overlap的xmin
yy1 = np.maximum(y1[i], y1[order[1:]]) #计算ymin的max,即overlap的ymin
xx2 = np.minimum(x2[i], x2[order[1:]]) #计算xmax的min,即overlap的xmax
yy2 = np.minimum(y2[i], y2[order[1:]]) #计算ymax的min,即overlap的ymax
w = np.maximum(0.0, xx2 - xx1 + 1) #计算overlap的width
h = np.maximum(0.0, yy2 - yy1 + 1) #计算overlap的hight
inter = w * h #计算overlap的面积
ovr = inter / (areas[i] + areas[order[1:]] - inter) #计算并,-inter是因为交集部分加了两次。
inds = np.where(ovr <= thresh)[0] #本轮,order仅保留IOU不大于阈值的下标
order = order[inds + 1] #删除IOU大于阈值的框
return keep
参考链接:
https://blog.youkuaiyun.com/shuzfan/article/details/52711706