【Codeforces559E】Gerald and Path

题意:

  • 一条路上有 n 盏不同的灯,每盏灯所在位置为pi,向左或者向右可以照射的距离为 li ,求最大总照射长度。
  • n100,li,pi108

题解:

  • 这道题dp思路似乎都很神奇?
  • dp[i][j][k] 表示到第 i 盏灯(按位置从左到右),最左边的需要覆盖到的位置j(0代表不存在未覆盖),最右端位置是 k ,包括了这段实际没有覆盖的最大总长度。
  • 考虑转移:
    • 向右照射,且之前的最左边需要覆盖的位置不变,转移方程:
      • dp[i][j][max(R[i],k)]=max(dp[i][j][max(R[i],k)],dp[i1][j][k]+max(0,R[i]k]))
      • 向左照射,且覆盖掉了原来实际没有覆盖(或者原来没有未覆盖)的部分,转移方程:
        • dp[i][0][max(p[i],k)]=max(dp[i][0][max(p[i],k)],dp[i1][j][k]+max(0,p[i]k]))(L[i]j)
      • 向右照射,且原来没有未覆盖部分,最右边位置在当前灯位置左边,取最右边位置后某一处 j 到当前位置作为假装覆盖实际没有覆盖部分(或者不选取),转移方程:
        • dp[i][k][R[i]]=max(dp[i][k][R[i]],dp[i1][0][j]+R[i]k)(jk<p[i])
        • 向左照射,且原来没有未覆盖部分,最右边位置在当前灯照射左边界左边,取最右边位置后某一处 j 到当前位置作为假装覆盖实际没有覆盖部分(或者不选取),转移方程:
          • dp[i][k][max(x[i],j)]=max(dp[i][k][max(x[i],j)],dp[i1][0][j]+p[i]k)(jk<L[i])
          • 总时间复杂度 O(n3)
          • 代码:

            #include <bits/stdc++.h>
            #define gc getchar()
            #define N 109
            using namespace std;
            int n,x[N],l[N],num[N],L[N],R[N],a[N],b[N],dp[N][N*3][N*3],ans;
            vector <int> lsh;
            int read()
            {
                int x=1;
                char ch;
                while (ch=gc,ch<'0'||ch>'9') if (ch=='-') x=-1;
                int s=ch-'0';
                while (ch=gc,ch>='0'&&ch<='9') s=s*10+ch-48;
                return s*x;
            }
            bool cmp(int aa,int bb)
            {
                return x[aa]<x[bb];
            }
            int main()
            {
                n=read();
                for (int i=1;i<=n;i++)
                {
                    x[i]=read(),l[i]=read(),num[i]=i;
                    lsh.push_back(x[i]-l[i]),lsh.push_back(x[i]),lsh.push_back(x[i]+l[i]);
                }
                sort(num+1,num+n+1,cmp);
                sort(lsh.begin(),lsh.end());
                lsh.erase(unique(lsh.begin(),lsh.end()),lsh.end());
                for (int i=1;i<=n;i++)
                    a[i]=x[num[i]],b[i]=l[num[i]];
                for (int i=1;i<=n;i++)
                {
                    L[i]=lower_bound(lsh.begin(),lsh.end(),a[i]-b[i])-lsh.begin()+1;
                    x[i]=lower_bound(lsh.begin(),lsh.end(),a[i])-lsh.begin()+1;
                    R[i]=lower_bound(lsh.begin(),lsh.end(),a[i]+b[i])-lsh.begin()+1;
                }
                for (int i=1;i<=n;i++)
                {
                    for (int j=1;j<=lsh.size();j++)
                        for (int k=j;k<=lsh.size();k++)
                        {
                            dp[i][j][max(R[i],k)]=max(dp[i][j][max(R[i],k)],dp[i-1][j][k]+max(0,lsh[R[i]-1]-lsh[k-1]));
                            if (L[i]<=j) dp[i][0][max(x[i],k)]=max(dp[i][0][max(x[i],k)],dp[i-1][j][k]+max(0,lsh[x[i]-1]-lsh[k-1]));
                        }
                    for (int j=1;j<=lsh.size();j++)
                    {
                        if (j<x[i])
                        {
                            dp[i][0][R[i]]=max(dp[i][0][R[i]],dp[i-1][0][j]+lsh[R[i]-1]-lsh[x[i]-1]);
                            for (int k=j;k<x[i];k++)
                                dp[i][k][R[i]]=max(dp[i][k][R[i]],dp[i-1][0][j]+lsh[R[i]-1]-lsh[k-1]);
                        }
                        else
                            dp[i][0][max(R[i],j)]=max(dp[i][0][max(R[i],j)],dp[i-1][0][j]+max(0,lsh[R[i]-1]-lsh[j-1]));
                        dp[i][0][max(x[i],j)]=max(dp[i][0][max(x[i],j)],dp[i-1][0][j]+max(0,lsh[x[i]-1]-lsh[max(j,L[i])-1]));
                        for (int k=j;k<L[i];k++)
                            dp[i][k][max(x[i],j)]=max(dp[i][k][max(x[i],j)],dp[i-1][0][j]+lsh[x[i]-1]-lsh[k-1]);
                    }
                }
                for (int i=1;i<=lsh.size();i++)
                    ans=max(ans,dp[n][0][i]);
                printf("%d\n",ans);
                return 0;
            }
            
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值