Java 并发:线程间通信与协作

本文深入解析线程通信机制,涵盖wait/notify与Condition接口的使用,对比两种方式的优劣,详细阐述生产者-消费者模型的实现,以及如何在多线程环境中避免异常终止。
  • 一. wait/notify (synchronized)机制:线程间通过共享数据来实现通信,即多个线程主动地读取一个共享数据,通过 同步互斥访问机制 保证线程的安全性。等待/通知机制 主要由 Object类 中的以下三个方法保证, 这三个方法必须在同步代码中执行, 并且使用同步锁对象来调用
    • 1、wait()、notify() 和 notifyAll():上述三个方法均非Thread类中所声明的方法,而是Object类中声明的方法。原因是每个对象都拥有monitor(锁),所以让当前线程等待某个对象的锁,当然应该通过这个对象来操作,而不是用当前线程来操作,因为当前线程可能会等待多个线程的锁,如果通过线程来操作,就非常复杂了。
      • 1) wait():让 当前线程 (Thread.concurrentThread() 方法所返回的线程) 释放对象锁并进入等待(阻塞)状态。
      • 2) notify():唤醒一个正在等待相应对象锁的线程,使其进入就绪队列,以便在当前线程释放锁后竞争锁,进而得到CPU的执行。在执行 notify() 方法后,当前线程不会马上释放该锁对象,呈 wait 状态的线程也并不能马上获取该对象锁。只有等到执行notify()方法的线程退出synchronized代码块/方法后,当前线程才会释放锁,而相应的呈wait状态的线程才可以去争取该对象锁。
      • 3) notifyAll():唤醒所有正在等待相应对象锁的线程,使它们进入就绪队列,以便在当前线程释放锁后竞争锁,进而得到CPU的执行。
      • 4) 小结:从以上描述可以得出:
        • wait()、notify() 和 notifyAll()方法是 本地方法,并且为 final 方法,无法被重写;
        • 调用某个对象的 wait() 方法能让 当前线程阻塞,并且当前线程必须拥有此对象的monitor(即锁);
        • 调用某个对象的 notify() 方法能够唤醒 一个正在等待这个对象的monitor的线程,如果有多个线程都在等待这个对象的monitor,则只能唤醒其中一个线程;
        • 调用notifyAll()方法能够唤醒所有正在等待这个对象的monitor的线程。
    • 2、方法调用与线程状态关系
      • 每个锁对象都有两个队列,一个是就绪队列,一个是阻塞队列。就绪队列存储了已就绪(将要竞争锁)的线程,阻塞队列存储了被阻塞的线程。当一个阻塞线程被唤醒后,才会进入就绪队列,进而等待CPU的调度;反之,当一个线程被wait后,就会进入阻塞队列,等待被唤醒。

  • 二. Condition
    • Condition是在java 1.5中出现的,它用来替代传统的Object的wait()/notify()实现线程间的协作,它的使用依赖于 Lock,Condition、Lock 和 Thread 三者之间的关系如下图所示。相比使用Object的wait()/notify(),使用Condition的await()/signal()这种方式能够更加安全和高效地实现线程间协作。Condition是个接口,基本的方法就是await()和signal()方法。Condition依赖于Lock接口,生成一个Condition的基本代码是lock.newCondition() 。 必须要注意的是,Condition 的 await()/signal() 使用都必须在lock保护之内,也就是说,必须在lock.lock()和lock.unlock之间才可以使用。事实上,Conditon的await()/signal() 与 Object的wait()/notify() 有着天然的对应关系:

      • Conditon中的await()对应Object的wait();
      • Condition中的signal()对应Object的notify();
      • Condition中的signalAll()对应Object的notifyAll()。
    • Condition 实现了一种分组机制,将所有对临界资源进行访问的线程进行分组,以便实现线程间更精细化的协作,例如通知部分线程
  • 四. 生产者-消费者模型:等待/通知机制 最经典的应用就是 生产者-消费者模型。下面以多生产者-多消费者问题为背景,分别运用两种模式 —— synchronized+wait-notify模式和Lock+Condition模式实现 wait-notify 机制。
    • 在多个同类型线程(多个生产者线程或者消费者线程)的场景中,为防止wait的条件发生变化而导致线程异常终止,我们在阻塞线程被唤醒的同时还必须对wait的条件进行额外的检查,即 使用 while 循环代替 if 条件;
    • 在多个同类型线程(多个生产者线程或者消费者线程)的场景中,为防止生产者(消费者)唤醒生产者(消费者),保证生产者和消费者互相唤醒,需要 使用 notify 替代 notifyAll.
基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究Matlab代码实现,重点在于提升系统在存在不确定性扰动情况下的控制性能稳定性。该模型结合实时迭代优化机制,增强了传统NMPC的数值鲁棒性,并通过双模控制策略兼顾动态响应稳态精度,适用于复杂非线性系统的预测控制问题。文中还列举了多个相关技术方向的应用案例,涵盖电力系统、路径规划、信号处理、机器学习等多个领域,展示了该方法的广泛适用性工程价值。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造、机器人控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于非线性系统的高性能预测控制设计,如电力系统调度、无人机控制、机器人轨迹跟踪等;②解决存在模型不确定性、外部扰动下的系统稳定控制问题;③通过Matlab仿真验证控制算法的有效性鲁棒性,支撑科研论文复现工程原型开发。; 阅读建议:建议读者结合提供的Matlab代码进行实践,重点关注NMPC的实时迭代机制双模切换逻辑的设计细节,同时参考文中列举的相关研究方向拓展应用场景,强化对数值鲁棒性系统稳定性之间平衡的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值