滑动窗口思想与题型

滑动窗口解题模板
  不同于咱们第一章学习的整数那般没有规律,滑动窗口可是有模板可套的。通过模板我们可以快速完成解题,但前提是,首先你要知道,题目属于滑动窗口的解题范围。那么滑窗的题目怎么识别呢?一般题目中都会有明确的“连续子数组”、“连续子串”等关键字,另外可能会附带最大、最小的限定词进行补充。
  (注意:假如让求最大的话,右边界尽量扩张,当扩张到某一处时不在满足条件时,不能通过继续扩张右边界而重新满足条件,只能收缩左边界,这类题属于滑动窗口题型;而如果继续扩张右边界后可以重新满足条件,则不属于滑动窗口题型 比如 剑指 Offer II 010. 和为 k 的子数组)
那么遇到这类型题目,该如何思考呢?分为以下几步:

  1. 初始化窗口左边界为0,右边界可以为0,也可以根据题意固定大小。
  2. 我们需要初始化一个ret的返回值,默认为0或者根据题意默认为最大值。
    最小值根据题意选择0 或者Java: Integer.MIN_VALUE ; Python:-float(‘inf’)
    最大值根据题意选择 Java: Integer.MAX_VALUE Python: float(‘inf’)
  3. 窗口的大小需要根据题目条件进行调整
    最大连续…尽量扩张右边界,直到不满足题意再收缩左边界(这时左边界收缩后满足条件时的left——right为以right为结尾的最大子串或最大子数组)
    最小连续…尽量缩小左边界,直到不满足题意再扩大右边界(这时右边界扩张后满足条件时的left——right为以left为开头的最小子串或最小子数组)
  4. 在执行3操作的过程中,不断与ret进行比较
  5. 最终返回ret结果即可。

具体模板如下:

初始化左边界 left = 0
初始化返回值 ret = 最小值 or 最大值
for 右边界 in 可迭代对象:
	更新窗口内部信息
	while 根据题意进行调整:
		比较并更新ret(收缩场景时)
		扩张或收缩窗口大小
	比较并更新ret(扩张场景时)
返回 ret

题型一
下面我就来看一道剑指offer的题目,是否可以通过套模板完成解题。

剑指OfferII008.和大于等于target的最短子数组
https://leetcode-cn.com/problems/2VG8Kg/solution/shua-chuan-jian-zhi-offer-day06-shu-zu-i-d5ne/

难度:中等

题目 给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, …, numsr-1, numsr]
, 并返回其长度。如果不存在符合条件的子数组,返回 0 。

提示:

1 <= target <= 10 ^ 9 1 <= nums.length <= 10 ^ 5 1 <= nums[i] <= 10 ^
5 进阶: 如果你已经实现 O(n) 时间复杂度的解法, 请尝试设计一个 O(n log(n)) 时间复杂度的解法。

示例

示例 1: 输入:target = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3]
是该条件下的长度最小的子数组。

示例 2: 输入:target = 4, nums = [1,4,4] 输出:1

示例 3: 输入:target = 11, nums = [1,1,1,1,1,1,1,1]

输出:0

分析
根据题目,已经将刚才提到的关键字进行了加粗表示,首先看到连续子数组,我们就该考虑是否可以通过滑窗的思维去解题。
然后看到了长度最小的限制,分析题意滑窗思维没毛病。
那么刚才模板中说的题目条件时什么呢?满足滑窗内数字之和需要大于等于target。
返回值ret又是什么?符合条件的子数组长度。
模板中所有的架子都搭好了,往里面套代码吧!

解题
java

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int left = 0;
        int total = 0;
        int ret = Integer.MAX_VALUE;
        for (int right = 0; right < nums.length; right++) {
            total += nums[right];
            while (total >= target) {
                ret = Math.min(ret, right - left + 1);
                total -= nums[left++];
            }
        }
        return ret > nums.length ? 0 : ret;
    }
}

题型二
还有一种题型可能只提及了连续子串、连续数组,但没有提及最大还是最小(而是让计算符合条件的连续子串个数),这时候也可以使用滑动窗口,只需计算出最大子串的子串个数即可(这时最大子串满足那么子串的子串一定还满足)

比如力扣 剑指 Offer II 009. 乘积小于 K 的子数组
给定一个正整数数组 nums和整数 k ,请找出该数组内乘积小于 k 的连续的子数组的个数。
示例 1:

输入: nums = [10,5,2,6], k = 100 输出: 8 解释: 8 个乘积小于 100 的子数组分别为: [10],
[5], [2], [6], [10,5], [5,2], [2,6], [5,2,6]。 需要注意的是 [10,5,2]
并不是乘积小于100的子数组。

上面这道题只需找到所有以righ结尾符合条件的最大子数组,然后计算最大子数组的子数组个数,最后依次相加即可,代码如下:

package leetcode.offer;

public class t9adv {
    public static void main(String[] args) {
        t9 a = new t9();
        System.out.println(a.numSubarrayProductLessThanK(new int[]{1, 2, 3}, 0));
    }
    public int numSubarrayProductLessThanK(int[] nums, int k) {
        int left = 0, sum = 0, muti = 1, right = 0;//sum为满足条件的数组数
        for (right = 0; right < nums.length; right++) {//右边界尽量右移
            muti *= nums[right];//更新当前子数组乘积
            while (muti >= k && left <= right) {//当加入right不满足条件时,left收缩直至满足,找到以right结尾最大子数组
                muti /= nums[left++];
            }
            if(left<=right) sum+=right-left+1;//当找到时,计算最大子数组的子数组个数;否则
        }
        return sum;
    }
}

<think>好的,我现在需要帮用户获取关于马士兵的数据结构算法学习路线图的最佳实践。用户提到了马士兵的Java自学路线,所以可能希望类似的结构。首先,我需要回忆马士兵的学习路线结构,通常他会分阶段,每个阶段有具体的内容和时间安排。 接下来,数据结构算法的学习路径应该涵盖基础到高级的内容。可能需要分阶段,比如先掌握基础数据结构,再学习算法思想,最后进行实战和优化。同时,用户可能需要结合编程实践,比如用Java或Python实现算法。 我还需要参考用户提供的引用内容,引用1提到了J2SE中的集合类、多线程、IO等,可能数据结构部分在集合类中有涉及。而引用2中的AI学习路线分阶段,包括实验和项目,这可能对数据结构的学习路径有借鉴意义,比如分阶段学习并配合小项目。 用户可能需要明确每个阶段的学习重点和时间安排,例如第一阶段学习线性结构和非线性结构,第二阶段学习排序和查找算法,第三阶段深入高级算法如动态规划,第四阶段实战和面试准备。同时,结合代码示例,比如快速排序的Python实现,帮助理解。 还要考虑用户提到的马士兵的学习路线中的细节,比如内存分析、递归等,这些在数据结构中也很重要。可能需要将这些知识点融入到各个阶段中,例如在讲解数据结构时分析内存,递归在算法中的应用等。 最后,生成相关问题,帮助用户进一步探索,比如性能分析、优化方法、应用场景等,类似示例中的问题。需要确保问题数据结构算法相关,并引导深入学习。 总结下来,我需要构建一个分阶段的学习路线,结合理论、代码实践和项目应用,参考马士兵的结构,并融入数据结构的核心内容,同时给出相关的问题供用户参考。</think>### 马士兵 数据结构算法 学习路线图 最佳实践 根据马士兵教育体系的特点(强调实战底层原理结合[^1]),结合算法学习的通用路径,建议分为以下四个阶段: --- #### **第一阶段:基础数据结构(3-4周)** 1. **线性结构** - 数组:内存连续性随机访问特性 - 链表:单链表/双向链表实现(Java `LinkedList` 源码分析) - 栈队列:应用场景如括号匹配、DFS/BFS基础 ```java // 链表节点定义示例 class Node<T> { T data; Node<T> next; } ``` 2. **非线性结构** - 树:二叉树遍历(前序/中序/后序)、堆的实现 - 图:邻接矩阵邻接表存储方式 - 哈希表:冲突解决策略(拉链法、开放寻址法) --- #### **第二阶段:核心算法思想(4-5周)** 1. **排序查找** - 十大排序算法对比(重点掌握快速排序、归并排序的递归/迭代实现) - 二分查找的变种问题(寻找边界、旋转数组搜索) $$T(n) = T(n/2) + O(1) \Rightarrow O(\log n)$$ 2. **递归分治** - 递归三要素分析(如汉诺塔问题) - 分治法的应用(归并排序、最近点对问题) 3. **贪心动态规划** - 背包问题对比(0-1背包 vs 分数背包) - 状态转移方程构建技巧(如最长公共子序列) --- #### **第三阶段:高级算法实战(3-4周)** 1. **高频算法题型** - 双指针:滑动窗口(最小覆盖子串) - 回溯法:N皇后问题、排列组合 - 位运算:布隆过滤器实现原理 2. **工程优化技巧** - 时间复杂度/空间复杂度权衡 - 内存对齐缓存友好设计(如跳表结构) --- #### **第四阶段:综合应用面试强化(2-3周)** 1. **LeetCode分类训练** - 按标签刷题(树、动态规划、字符串) - 参周赛/双周赛模拟实战 2. **系统设计融合** - 数据结构在框架中的应用(如Redis用跳表实现ZSET) - 结合场景设计数据结构(如LRU缓存机制) --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值