from __future__ import print_function, division
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import sys
import numpy as np
class GAN():
def __init__(self):
self.img_rows = 28
self.img_cols = 28
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.latent_dim = 100
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
# 建立和编译判别器
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
# 建立生成器
self.generator = self.build_generator()
# The generator takes noise as input and generates imgs
# 生成器输入随机数值(噪声)生成图片
z = Input(shape=(self.latent_dim,))
img = self.generator(z)
# For the combined model we will only train the generator
# 联合模型,只训练生成器
self.discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
# 判别器以生成的图片为输入判别有效性
validity = self.discriminator(img)
# The combined model (stacked generator and discriminator)
# 联合模型(叠加生成器和判别器)
# Trains the generator to fool the discriminator
# 训练生成器欺骗判别器
self.combined = Model(z, validity)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
model = Sequential()
model.add(Dense(256, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
model = Sequential()
model.add(Flatten(input_shape=self.img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=self.img_shape)
validity = model(img)
return Model(img, validity)
def train(self, epochs, batch_size=128, sample_interval=50):
# Load the dataset
# 加载数据
(X_train, _), (_, _) = mnist.load_data()
# Rescale -1 to 1
# 数据缩放到-1至1之间
X_train = X_train / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)
# Adversarial ground truths
# 对抗性的基本事实
valid = np.ones((batch_size, 1)) # 32行1列,每个值都是1
fake = np.zeros((batch_size, 1)) # 32行1列,每个值都是0
for epoch in range(epochs):
# ---------------------
# Train Discriminator 训练判别器
# ---------------------
# Select a random batch of images
# 随机选择一批图像
idx = np.random.randint(0, X_train.shape[0], batch_size) # X_train.shape (6000,28,28,1)
imgs = X_train[idx]
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# Generate a batch of new images
# 随机生成一批图像
gen_imgs = self.generator.predict(noise)
# Train the discriminator
# 训练判别器
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator 训练生成器
# ---------------------
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# Train the generator (to have the discriminator label samples as valid)
# 训练生成器(使判别器标签样本有效)
g_loss = self.combined.train_on_batch(noise, valid)
# Plot the progress
# 规划进度
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
# If at save interval => save generated image samples
# 如果在保证图像间隔 => 保存生成的图像样本
if epoch % sample_interval == 0:
self.sample_images(epoch)
def sample_images(self, epoch):
r, c = 5, 5
noise = np.random.normal(0, 1, (r * c, self.latent_dim))
gen_imgs = self.generator.predict(noise)
# Rescale images 0 - 1
# 数据缩放到-1至1之间
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
fig.savefig("images/%d.png" % epoch)
plt.close()
if __name__ == '__main__':
gan = GAN()
gan.train(epochs=30000, batch_size=32, sample_interval=200)
代码解释
from __future__ import print_function, division
在开头加上from __future__ import print_function, division这句之后,即使在python2.X,使用print、division就得像python3.X那样加括号使用。python2.X中print不需要括号,而在python3.X中则需要。
详解:
https://blog.youkuaiyun.com/xiaotao_1/article/details/79460365
https://blog.youkuaiyun.com/feixingfei/article/details/7081446