SparkStreaming读取Socket端口数据
1.代码:
SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("WordCountOnline");
JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5));
JavaReceiverInputDStream<String> lines = jsc.socketTextStream("node5", 9999);
// JavaSparkContext sc = new JavaSparkContext(conf);
// JavaStreamingContext jsc = new JavaStreamingContext(sc,Durations.seconds(5));
// JavaSparkContext sparkContext = jsc.sparkContext();
2.注意:
* 1、local的模拟线程数必须大于等于2 因为一条线程被receiver(接受数据的线程)占用,另外一个线程是job执行
* 2、Durations时间的设置,就是我们能接受的延迟度,这个我们需要根据集群的资源情况以及
监控每一个job的执行时间来调节出最佳时间。
* 3、 创建JavaStreamingContext有两种方式 (sparkconf、sparkcontext)
* 4、业务逻辑完成后,需要有一个output operator
* 5、JavaStreamingContext.start()straming框架启动之后是不能在次添加业务逻辑
* 6、JavaStreamingContext.stop()无参的stop方法会将sparkContext一同关闭,stop(false) ,默认为true,会一同关闭
* 7、JavaStreamingContext.stop()停止之后是不能在调用start
代码实例:
package com.bjsxt;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import scala.Tuple2;
import scala.actors.threadpool.Arrays;
public class SparkStreamingTest {
public static void main(String[] args) {
SparkConf conf=new SparkConf().setAppName("test").setMaster("local[2]");
JavaSparkContext sc=new JavaSparkContext(conf);
JavaStreamingContext jsc=new JavaStreamingContext(sc,Durations.seconds(5));
JavaReceiverInputDStream<String> lines = jsc.socketTextStream("node01", 9999);
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterable<String> call(String line) throws Exception {
return Arrays.asList(line.split(" "));
}
});
JavaPairDStream<String, Integer> pairwords = words.mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String,Integer>(word,1);
}
});
JavaPairDStream<String, Integer> result = pairwords.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
}
});
result.print();
jsc.start();
jsc.awaitTermination();
jsc.stop();
}
}