题目链接:点击打开题目
You've decided to carry out a survey in the theory of prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors.
Consider positive integers a, a + 1, ..., b (a ≤ b). You want to find the minimum integer l (1 ≤ l ≤ b - a + 1) such that for any integer x (a ≤ x ≤ b - l + 1) among l integers x, x + 1, ..., x + l - 1 there are at least k prime numbers.
Find and print the required minimum l. If no value l meets the described limitations, print -1.
A single line contains three space-separated integers a, b, k (1 ≤ a, b, k ≤ 106; a ≤ b).
In a single line print a single integer — the required minimum l. If there's no solution, print -1.
2 4 2
3
6 13 1
4
1 4 3
-1
这题绕的不行,但是还是能观察出来,l 越大越容易成立,要求的是最小的 l ,那么就二分好了。
代码如下:
#include <cstdio>
#include <stack>
#include <queue>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
#define CLR(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define LL long long
#define MAX 1000000
int pr[MAX+11] = {1,1};
int cnt[MAX+11];
int a,b,k;
void GetPrime()
{
for (int i = 2 ; i <= 500000 ; i++)
{
if (!pr[i])
for (int j = i + i ; j <= MAX ; j += i)
pr[j] = 1;
}
cnt[0] = 0;
for (int i = 1 ; i <= MAX ; i++)
cnt[i] = cnt[i-1] + (!pr[i]); //素数个数前缀和
}
bool check(int mid)
{
for (int i = a ; i <= b - mid + 1 ; i++)
{
if (cnt[i+mid-1] - cnt[i-1] < k)
return false;
}
return true;
}
int main()
{
GetPrime();
while (~scanf ("%d %d %d",&a,&b,&k))
{
int l = 1;
int r = b-a+1;
int mid;
while (r >= l)
{
mid = (r + l) >> 1;
if (check(mid))
r = mid - 1;
else
l = mid + 1;
}
if (l <= b-a+1) //范围内有满足的答案
printf ("%d\n",l);
else
puts("-1");
}
return 0;
}