Cglib的动态代理

本文介绍使用Spring CGLIB库实现动态代理的过程。通过创建CglibDaoImpl类及CglibUtils工具类,演示了如何为指定方法添加事务管理逻辑。实验结果显示,在不修改原始代码的情况下成功实现了方法调用前后增加自定义行为。
package aop_cglib;

public class CglibDaoImpl {
	
	public void save(){
		System.out.println("保存。。");
	}
	
	public void update(){
		System.out.println("更新。。");
	}

}

package aop_cglib;

import java.lang.reflect.Method;

import org.springframework.cglib.proxy.Enhancer;
import org.springframework.cglib.proxy.MethodInterceptor;
import org.springframework.cglib.proxy.MethodProxy;

public class CglibUtils {
	
	public static <T> T getDao(T daoImpl){
		Enhancer enhancer = new Enhancer();
		//设置父类
		enhancer.setSuperclass(daoImpl.getClass());
		//设置回调函数
		enhancer.setCallback(new MethodInterceptor() {
			// 代理对象的方法执行 回调函数就会执行
			@Override
			public Object intercept(Object arg0, Method method, Object[] args, MethodProxy arg3) throws Throwable {
				if(method.getName().contains("save")||method.getName().contains("update")||method.getName().contains("delete")){
					System.out.println("打开事务");
				}
				// 执行原方法
				methodProxy.invokeSuper(obj, args); 
				// method.invoke也可以完成方法的调用。。不知道有何区别
				// method.invoke(daoImpl, args);
				if(method.getName().contains("save")||method.getName().contains("update")||method.getName().contains("delete")){
					System.out.println("关闭事务");
				}
				return null;
			}
		});
		//生成代理对象
		@SuppressWarnings("unchecked")
		T proxy = (T) enhancer.create();
		return proxy;
	}
	
}

package aop_cglib;

import org.junit.Test;

public class TestAopCglib {
	
	@Test
	public void testCglib(){
		// 代理前
		CglibDaoImpl dao = new CglibDaoImpl();
		dao.save();
		dao.update();
		System.out.println("=============");
		
		// 代理后
		CglibDaoImpl proxy = CglibUtils.getDao(dao);
		proxy.save();
		proxy.update();
		
	}

}

输出:


保存。。
更新。。
=============
打开事务
保存。。
关闭事务
打开事务
更新。。
关闭事务

内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值